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We are concerned with the set of polynomials { S* ¥} which are orthogonal with
respect to the discrete Sobolev inner product

<fog> =J- wlx) f(x) glx) dx + Mf(0) g(0)+ Nf(0) g'(0),
O

where w is a weight function, />0, ¥ >0. We show that these polynomials can
be described as a linear combination of standard polynomials which are orthogonal
with respect to the weight functions w(x), xiw(x), and v*w(x). The location of the
zeros of S is given in relation to the position of the zeros of the standard
poiynomials. 1993 Academic Press. [nc

I. INTRODUCTION

Several authors generalize the concept of standard orthogonal polyno-
mials to orthogonal polynomials in a Sobolev inner product space. We
mention here Althammer [1], Brenner [37], Cohen [5], and more recently
Bavinck, Meijer [2], Koekoek [7], Marcellan, Ronveaux [10], and
Iserles, Koch, Nersett, Sanz-Serna [6].

In the present paper we investigate the polynomials {S¥ "} which are
orthogonal with respect to the inner product

*

gy =] wix) flx) glx) dx + Mf(0) g(0) + Nf'(0) g'(O)

where w is a weight function, M >0, N=0.
We show that these polynomials can be expressed as

S:"N(.\') - B| K”(,\‘) + BZ-\‘K};Z' ](x) + B].\'ZK""“:(.\‘L (ll)
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2 H. G. MEJER

where {K,}, {K!*'} and {K!*'} are the sets of standard orthogonal polyno-
mials (M = N =0) with respect to the weight functions w(x), respectively,
x2w(x) and x*w(x).

Furthermore we describe the position of the zeros of S ¥(x) in relation
to the zeros of K, (x) and K'»(x).

In Section 2 we recall some well-known results on the standard polyno-
mials and derive some simple relations between K,, K'*, and K!*. In
Section 3 we define the polynomials S}** and prove relation (1.1). In
Section 4 the coefficients B,, B,, and B, in (1.1) are studied in more detail.

Section 5 contains some simple results on the zeros of SM". Finally in
Section 6 the location of the zeros of $¥ " in relation to the zeros of K,
and K!*' is derived.

Some results in this paper are direct generalizations of results in [9],
where the weight function is the Laguerre weight wix)=x% * (x> —1);
the results in Section 6, however, are completely new.

2. THE STANDARD POLYNOMIALS

Let w denote a weight function on (0, =), i.e., w(x) >0, all moments

= w(x) x” dx, n=0,1,2, ..

n
0

exist and ¢, #0.

The support of w, ie., the closure of the set {x | w(x)>0} may be a real
subset of [0, oc); the point x =0 may be outside or on the boundary of the
support of w.

Consider the inner product

Pl

(/. g)=j0 w(x) f(x) glx) dx. (2.1)

Define the set of standard polynomials {K,} by

Ky(x)=1,
Co ¢y ¢, .- fan
¢ (&) C3 o Chy
C; C3 Oy o Chg2
K,(x)=]| . . , for n>1. (2.2)
Ch 1 €y Chugin o Cap g
1 x xr .. xT
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Then we have, for 0<i<n—1, that (x', K,)=0, showing that {K,} is
an orthogonal set with respect to the inner product (2.1).
Let «, denote the leading coefficient of K, (x), then we have

(x". K, )=a,., for n=0.

Then (a,x", K,)=a,a, , . On the other hand, a,x" =K, (x}+ p, ,(x), for
some polynomial p, | of degree <n—1. Then (a,x". K,)=(K,, K,)>0.
This implies «,,a, , , >0 for 1= 0. Since ¢, =1 all leading coefficients a, are
positive.

In the same way we can describe the sets of polynomials {K!*'! and
tK!*'} which are orthogonal with respect to the weight functions w(x)x?
and w(x)x* respectively. They are defined for n>1 by the determinant
(2.2) with ¢; replaced by ¢, ,, respectively ¢,, . For n=0 we define
KM =K x)=1.

We will often use the following result: all zeros of K,, K'*' and K!*" are
real, simple and lie in (0, o).

Especially this implies, since the leading coefficients are positive,
sgn K,(0) =sgn K!*'(0)=sgn K!*(0)=(—1)" for n=0, (2.3)

n

sgn K(0)=sgn K2 (0)=sgn K*(0)=(—1)" ! for n=1. (2.4)

LEMMA 2.1.  The following relations hold:

[ win) KOx) dx =K, (0) Jor n>0. (2.5)
QO
| ow()xKP(x)dv= —K,.,(0)  for n>0. (2.6)
v

. 0 or n>1
[ w(x)x? K,‘,Z’(,\')dxz{ Jor (2.7)
0 ¢y for n=0.
J‘: w(x)x? K¥(x)de= K, (0) for n=0. (2.8)
4]
[ wox* Ky dy= —K2,0)  for n>0. (29)
0

Proof. For n>1 relations (2.5) and (2.6) follow from the determinantal
representation (2.2). Relation (2.7) for n2 | is a direct consequence of the
orthogonality. For n=0 we observe K*(x)=1 and K,(x)=c¢,x—¢, and
(2.5), (2.6), and (2.7) follow for n=0.
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Relation (2.8) and (2.9) are a direct consequence of (2.5), respectively
(2.6).
3. THE POLYNOMIALS S,

Consider the inner product
(figy= j W(x) £(x) g(x) dx + MF(0) g(0)+ Nf'(0) g'(0), (3.1)

where M =0, N>0. Then
M if i=j=0,
{xXix'y=c¢, ;4 N if i=j=1,

0 otherwise.
Define the set of polynomials {S-V} by
: , o+ M ¢
SyMxy=1, M) =" ",
1 X
c+M o 3 <y
€y o+ N o AR S
‘ (& ¢ C .. ¢,
Sy Mxy=1| ° ) ! r? for n=2. (32)
Cu o1 Cp Cn+l 2, 1
1 Y X 2 Y ”n

We often write S,(x) instead of SM*(x). For 0<i<n—1 we have
{x%,8,>=0. Let a, denote the leading coeflicient of S, then for n =2

<~\‘”w Sn>:(7n+l'
For n=0 we obtain {1, Sy>=c,+ M=4a, and forn=1,

o+ M ¢

1
¢y (5

(x, 8> = + N(co+M)=a,.

Hence <(x", S,>=d,,, for n=0. Then 0<<{S,,S,>=4,{x",S,>=
a,d, ., for n=0. Since d,= 1, all leading coefficients are positive. We have
found that {S,} is a set of orthogonal polynomials on (0, oc) with respect
to the inner product (3.1).
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Evaluating the determinant (3.2) it follows that S, can be written as
S (x)=K,(x)+ MxK$' (x)+ MNx?K'® (x) + Ng,(x), for some polyno-

mial ¢, of degree <n. Here the pol};nomials K, (x), xK'* (x), and
2K ,(x) occur. We observe that for 2<i<n—1,

(x', Ky(x)) =0,

~ X

Cx XK (X)) =j0 w(x) x2x’ K2 (x) dx =0,

(K0 = [ i) xR () dx =0,
0

Then S, can be written as

S,(x)=B K,(x)+ B,xK (x)+ B;x’K ¥ ,(x),

if the constants B,, B,, and B; are chosen in such a way that
(1,8,>=0 for n=1. (3.3)
(x,5,>=0 for n=2. (3.4)
[As usual we define K'*}(x)=K"|(x)=K"}(x)=0.] Using (3.1), (2.6),

(2.8), and (2.9) we conclude that B,, B, and B, had to satisfy the equa-
tions

B, MK,(0)— B,K,(0)+ B;K* (0)=0 for n>1,
B NK(0)+ B, NK!? (0)— B, K (0)=0  for n>2.
We take
K(’)l(o)

B=1——2—-—-N for n>=0.

K., (0)
Then we find, using Cramer’s rule for n =2

_ s Ki0 K2 0)
B= M5 0 K7 ,0)

(0)
K\ (0)

for n>1,

By=MN+—5——N for n=2.

We have obtained the following resuit.

THEOREM 3.1. For n>0 the polynomial S}" can be written as

SyM(x) =B, K, (x)+ B,xK{? [(x)+ B x K[ (x),
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where
B,=1—a,N, By=M+a,f,N. By=MN+E,N,
with
K (0 K, (0
a, = ﬁ%)—) for n=0, B.= K,'f”'(l(())) for nx=1. (3.5)

Remark 3.1. It follows from (2.3) and (2.4) that «,>0, f,>0, thus
B,20, B;=0. On the other hand, B, may be negative.

Remark 3.2, The theorem implies

5,,(0)=K (0)1 —2,N), (3.6)

Then S,(0) is independent of M and S,(0) is independent of N. This can
also directly be concluded from the determinant (3.2). We observe that
S.(0) always has the same sign as K(0), i..e, (—1)" '. On the other hand,
S.,(0) and K,(0) have different signs if B, =1—x,N is negative. We will use
this fact in the discussion on the zeros of §,.

4. MONOTONICITY OF o, AND f3,

In this section we prove that the sequences {x,} and {f,} defined in
(3.5) are monotonic.

We start with the well-known relation of Christoffel-Darboux for the
polynomials {K!?},

] (2) .. 2)
(x —u) Z K (x)K; () |

i=0

hi”i»l h‘_ IK:‘:"I( )K"‘z'(ll)_K:z”( )Kr'xl'l(ll)'\

n+

(4.1)

where b, denotes the leading coefficient of K!*)(x).

THEOREM 4.1.  The sequence | B,} is decreasing.

Proof. Multiply (4.1) by w(u) and integrate over (0, oc ). Then (2.5) and
(2.6) give

” l’)( ) n (2)(\.)
YL, KO 2 e

i=0
1 2 ' 2
b~ (K;‘le(Y)Kn+l(O)_K' '(\)Krz+’(0)}-

n+l

K, (0)
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For x =0 we obtain

; o " K0V K, , (0
(KU (0) KD (0) = K2(0) K, 50 = 3 RO K1 (0)

N
hn#] =0 bnhi+l

The right hand term is negative by (2.3). Since K!?(0) K!*),(0) is negative
too. this implies

_Klll+l(0) Kl/l+:(0)_
/f,” P = K’(Il)(o) >K12\ (0)—

2w+ 1

ﬁn 42

THEOREM 4.2, The sequence {x, ) is increasing.

Proof. We now multiply (4.1) by ww(u) and integrate over (0, o). With
(2.6) and (2.7) we obtain

2 Kr::)(,\')
-x Y 5 K, (0)—1
i=0 IR
] , y
= b2 : NK::‘: I('\‘) Kn+ 1(0) + Kl‘l-’('\.) Kn+ Z(O)}
n+ 1

Differentiating this relation and substituting x =0 we obtain

" KP0) K, ,{0): 1
h.b bl

=0 it n+1

- (=K 0K, (0)+ KPT(0) K, (0)].

"+

The left hand side is positive. Since K, , (0)K,, ,(0) is negative this
implies
K(l)’ (0) K(lr'(O)

n+ 1 n

> =0, ..
K, 200" K, (0) """

Ayy2=

COROLLARY 4.1.  In view of (3.6), Theorem 4.2 implies: if S,(0) and
K (0} have different signs for n=n,, then they have different signs for all n
with n>n,. Remember sgn K (0)=(—1)".

THEOREM 4.3, The sequence [, f,} is increasing.
Proof. By (3.5} we have

K(0) K;°7,(0)

—— for nz=1.
K,(0) K}* (0)

an n=

Let x, < x,< .- <X, denote the zeros of K,. Then

K. (0) 1 1 1
DA 4.2
,KH(O)) "‘1 * .\‘2 + * "‘n ( )
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Let 5,<n,< --- <n,,, denote the zeros of K, , . It is well known that
the zeros of K, and K, , , mutually separate each other, te.,

N, <X, <1, for i=1,2..,n
Hence
‘K,’,+,(0)‘_1+ . 1 >1+ +1>1+ +1_’K,’,(0>|
K11+l(0) m Mo m Ny X Xy KII(O) .
(4.3)

The same result holds for K!*'. This implies that {«,8,} is increasing.

Remark 4.1. Suppose that the weight function w is such that
|K,(0)/K,(0)] — oo if n— . It follows from the proof of Theorem 4.3 that
a,f,— . Since, by Theorem 4.1, {f,} is decreasing we have x, — .
Then (3.6) imphlies that S,(0) and K,(0) have different signs if » is
sufficiently large.

We mention two situations in which this condition on the weight
function w is satisfied.

A. Suppose that the support of w is contained in the finite interval
[0, a]. Then the zeros of K, are in (0, ¢) and by (4.2)

K.(0)| _n

K, (0)| " a

B. Suppose that the weight function w is uniquely determined by the
sequence of moments {c,}. Suppose moreover that 0 is in the support of
w. Then it follows from [4, p. 58-607 that the smallest zero x; of K, tends
to 0 if n - oo. Then (4.2) implies

K,(0)
K,(0)

‘—‘):X].

On the other hand, Koekoek [8] has given an example of a weight
function for which {«,] is bounded. Hence there exists a weight function
which does not satisfy the condition |K,(0)/K,(0)] — o¢ if n— oo,

5. THE ZEROS OF S, : INTRODUCTION

Let the support of w be contained in the interval [0, ), where a may be
finite or infinite.
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THEOREM 5.1.  The polynomial S, has n real, simple zeros; at most one of
them is outside (0, a). If S, has a zero outside (0, a), then the zero is in

{(—x,0).

Proof. Let v, v,, ... v, denote the zeros of S, in (0, a) of odd multi-
plicity. Put

Plx)=(x =y )x—vy) - (¥ —vy). (5.1)

Remark that for & = 1, ¢(0), and ¢'(0) have opposite sign. Then ¢(x) S, (x)
does not change sign on [0, a). Suppose degree ¢ <n—1. Then
(¢, 8,>=0,1e,

P

| (2 0(x) S,(x) dx + M (0) 5,(0) + Ng'(0) S,(0)=0.  (52)
0

If N =0 this is obviously impossible. Hence for N =0 we have degree ¢ =n.
If N> 0 relation (5.1) does not lead to a contradiction. Suppose now that,
for N> 0, degree ¢ <n— 2. Then also {x¢, S,>=0, iec.,

- s

w(x) xe(x) S,(x)dx+ No(0) S,(0)=0. (5.3)
0

It follows from (5.2) and (5.3) that ¢'(0) S,(0) and ¢(0) S,(0) should
have the same sign. This i1s a contradiction. Hence, for N > 0, degree ¢ =n
or n—1 and the first part of the theorem follows.

Suppose now that degree ¢ =n— 1. Then there is one zero v, of S, out-
side (0, a). Relation (5.2) still holds. If S,(0) =0 then v, =0 is the last zero
of §,. If S,(0)+#0 then (5.2) implies that ¢(0) S,(0) and ¢'(0) S,,(0) should
have opposite sign. Since ¢(0) and ¢'(0) have opposite sign, we conclude
that S,(0) and S/(0) have the same sign. But then the last zero v, cannot
lie in [a, > ). Hence v, e (— o0, 0).

CorOLLARY 5.1.  Concerning the position of the zeros of S, there are two
different possible situations.

I. All n zeros & <&y< - <&, lie in (0,a)c (0, ). Since the
leading  coefficient &, of S, is positive, then sgn S, (0)=(—1)",
sgn S,(0)=(—-1)""".

2. Therearen—1zeros E,<Ey< - <&, 0f S, in (0, a) = (0, ) and
there is one zero &, €(—oc, 0]. In this case we write £, = —p, p20. Then

Sn(x)=&n(x+p)(x_52)"'(—)(_5;1)- (5'4)

If p#0, then sgn SA0)=(—1)" ' It is stated in the proof of Theorem 5.1
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that in this cuse S, (0) and S,(0) should have the same sign. Hence
sgn S,(0)=(—1)" "
It follows from Remark 3.2, recall (2.3): sgn K,(0)=1(—1)", that the first
situation occurs when 0 <o, N <1 and the second one when a,N = 1.
THEOREM 5.2. If'S, has a zero in (— 2, 0] for n=n,, then S, has a zero
in {—,0) for all n with n> n,,.
Proof. This statement is a direct consequence of Corollaries 4.1 and 5.1,

Finally we derive some simple estimates for the negative zero —p of S,,.

THEOREM 5.3.  Suppose that S, has a zero —pe (—oc,0). Then
(a) p<&,, where &, denotes the smallest positive zero of S,
(b) if the support of w is contained in the finite interval [0, a), then
p<alln—1),
(c) it M#0, then p<4 \/‘/Y—\//‘M.
Proof. Corollary 5.1.2 implies

S0y 111 1
0<—_“=—_T“T"' -
SII(O) p CI C; ‘:n
Hence
| . 1 1
>+ + -t (5.5)
p §7 C} Cn

Then 1/p>1/&,, 1e., p<&,.
If @ is finite, then &, <&, < -+ <&, <a Then (5.5) gives

1 n—1

P a

Hence p <af(n—1). In order to prove (c) we remark that by (5.1) and
(5.4), S, can be written as

S,(x)=a,(x+p) @(x).
Then ¢(x) S,(x) is non-negative on [0, oc) and (5.2) implies
M(0) S,(0)+ No'(0) S,(0) <0
or

Mpp(0)* + No'(0){¢'(0) + pe(0)} <0.
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We obtain
PiM@(0)*+ No'(0)*} < —No'(0) p(0) = N |9'(0) 9(0)I.
On the other hand,
M@(0)* + No'(0)* 22 /MN |9(0) ¢'(0)].

Hence p <1 /N/M.

6. LOCATION OF THE ZEROS OF S,

The following observation is due to Christoffel (see [11t, p. 30]). Put

Kn l(x) K"(.\') Kn+l(x)
xXQ, (x)=|K, (0) K,(0) K, (0) for n=t.  (6.1)
K, 1(0) K,(0) K, (0)

Then obviously Q, | is a polynomial of degree #n—1 with leading
coefficient, a,, {K, (0)K,(0)—K,(0)K, (0)}#0 (compare (4.3)).
Moreover

s

J w(x)x'x*Q, ,(x)dx=0 for i=0,1,..,n—2
0

Hence

Q, (x)=const K'*' (x). (6.2)

LEMMA 6.1. Between two consecutive zeros of K, there is exuctly one
zero of K'Y .

Proof.  Using (6.1), (6.2), and the recurrence relation we may write

K (x)=(d, x+dy) K (x)+d, K, (x)

for some constants d,, d,, d5. Since K,(0)#0 we have d;#0. Let x; and
x;,; denote two consecutive zeros of K,. It is well known that K, | has
exactly one zero in (x,, x,,,). Hence K, ,(x,) and K, ,(x,,,) have
opposite sign. Then also K¢’ (x,) and K'¥ (x,,,) have opposite sign.
This implies that K!» | has at least one zero in (x,, x,, ;). Since this holds
for i=1,2,..,n—1 we conclude that K}f'l has exactly one zero in

(x50 x,40)
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COROLLARY 6.1.  Since the zeros of K, and K'?' | mutually separate each
other we can also state that between two consecutive zeros of K'\?' | there is
exactly one zero of K,. Reading Lemma 6.1 with the weight function w
. ; I ; . . i e of K2
replaced by x“w(x) we obtain that between two consecutive zeros of K=",
there is exactly one zero of K\ .

LEMMA 6.2, Let y,<y,< --- <y, , denote the zeros of KP' . Then
K, (v)and K'*' ,(y,) have opposite sign. The sign of K'? (v,)is (=1)" ' 7.

n

Proof. Let x, denote the largest zero of K, and =, , the largest zero of
K' . Lemma 6.1 implies =, ,<y, ,<ux,. Since all leading coefficients
are positive we have

Kn(yn 1)<0<K1;4'2(.1'n l)

and the lemma is proved for i=n—1.

Running from y, , to v, , we pass exactly one zero of K, and exactly
one zero of K, Then in y, , we conclude that K,(y, ,) and
K" ,(v, ) have again different sign. Moreover the sign of the latter is
— 1. Hence the lemma is proved for i=n—2. Proceeding in this way we
prove the lemma for i=n—1,n—2,n—3, ., L.

The lemma enables us to give a complete description of the position of
the zeros of S, if S, has a negative zero.

THEOREM 6.1. Let vy, <y,< --- <y, | denote the zeros of K'P .
Suppose that S, has a zero in (—x,0]. Then S, has a zero in (0, v,) and
a zero in every interval (v, v, ) i= 1,2, ... n—2. The non-positive zero lies

in (—1v,,0].
Proof. By Theorem 3.1 we have

*911(.1.1’) = (1 - an /Vb Ku(."‘i’ + B3 .VllKi;H 2(."1)’

where B;>0 and | —a, N <0 (compare Corollary 5.1). Then Lemma 6.2
implies sgn S, (y,)=(—1)" ' . Hence every interval (1, v, )
i=1,2,..,n—2 contains at least one zero of S,,.

Moreover Lemma 6.2 implies sgn S,(1,)=(—1)" Suppose S,(0)#0.
Then Corollary 5.1.2 says sgn S,(0)=(—1)" ' and there is at least one
zero of S, in (0, v,). If 5,(0)=0 then, again by Corollary 5.1.2, we have
sgn S,(0)=(—1)" ' and again there has to be at least one zero of S, in
(0, y,). Since S, has by assumption n—1 zeros in (0, oc) every interval
(0, ¥), (¥ ¥iy ) i=1,2, .., n—2 has exactly one zero of S,.

Finally let —p denote the non-positive zero of S, and &, the smallest
positive zero of S,. Then by Theorem 5.3(a), p <&, < y,.
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It is possible to represent S, as a linear combination of K,,(x), xK'? (x),
and K!?' ,(x). However, the coeflicients are more complicated than those in

Theorem 3.1.

THEOREM 6.2.  For n=0 the polynomials SY-" can be written as

SYNx)=D K, (x)+ Dy xKP [(x)+ DK (x), (6.3)
where
D,=1 —7(-"‘70—)—3 PKJ0) K (0)+ K,(0) K, (0)) — MN %L(‘é?)—
D,=M+ N%I—S)Ldr KAT(])V) {K,(0) K7 (0) = K,(0) K (0)],
D;=N %%+ MN ———K,:';‘O(?).

Proof. We proceed as in the proof of Theorem 3.1. Obviously the
righthand member of (6.3) is orthogonal with respect to the inner product
(3.1) on x’for 2<i<n—1 for every choice of D,, D,, and D,. So we have
to choose the coefficients in such a way that also (1,S5,>=0 and
{x, S,>=0. This gives the equations

D, MK, (0)— D,K,(0)+ D,(K,(0)+ MK'? (0))=0,
D, NK,(0)— DZNKff’ {0+ Di(— K, (0)+ NKif",(O)) =0.

From this system the coefficients can be derived.

Observe that the coefficients of N and MN in D, are positive, so D, may
be zero for suitable choices of N and M. If D =0, then S, (x)=
(D>,x+ D) K'Y (x) and all zeros of K'?' (x) are zeros of S,,.

Finally we describe the behaviour of the zeros of S, =S for fixed n and
M and variable N. Let, as before, vy, < y,< --- <y, | denote the zeros of
K2 and &, <&, < .- <§, those of SY. If N=0, then S} =K, and by
Lemma 6.1 the location of the zeros of S, is as follows:

&y <1y, Sa> Va1 Civ1€(¥ yivy) for i=1,2,.,n—2 (a)

On the other hand, if N=N,>ua, ' then by Theorem 6.1 the location of
the zeros is

Ei<E <y, Eiorelyi 15 v) for i=2,.,n~1 (b)

The zeros &,,, are continuous functions of N. If N runs from ¥=0 to
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N =N, the situation (a) is continuously transformed in the situation (b).
Hence &, ., had to pass through v, (i=1,2,..,n—1). By Theorem 6.2,

S¥y)=D,K,(y)  i=12..n—1,

where D, = D (N) is a linear function of N. (Recall that M and # are fixed.)
Hence there is exactly one value N, e (0, N,) such that D (N,)=0. For this
value Ny it follows &, =y, fori=1,2, .., n—1.

Now we may conclude that if Ne [0, Ny), then the zeros of S, are
located according to position (a), if N> N,, then the zeros of S are in
position (b).

COROLLARY 6.2.  Either all zeros of K'Y | are zeros of S,, or benween
two consecutive zeros of K3 | there is exactly one zero of S,

Remark 6.1. In general it is not true, that between two consecutive
zeros of K, there is a zero of §,. Let v, <x,< ... <x, denote the zeros
of K,,. By Theorem 6.2,

S, (x)=(Dsx,+ D;) K (x,) i=12 ... n (6.4)
Take N=M — =, then —D,/D, converges to

Kixz’ 1(0) K,,(O)
K, (0) K'» (0)— K,(0) K" (0)

T =

Now

lzﬁf_"n@_m:ii_
T KJ(0) K,(0) X,

f=1""1 i

By Lemma 6.1, x,< y,<x,,,,i=1,2,..,n—1. Hence

11 1
—<-<—,
X, T X,

Le., X, <1T<X,.

This implies that we can choose N and M in such a way that the zero
T of Dy x+ D; is between two consecutive zeros, say x; and x;,, of X,,.
Let moreover N be chosen so large that S, has a negative zero. If
ie{l.2,.,n—1}, i+, then by (6.4) and Lemma 6.1, 5,(x,) and S,(x,, )
have opposite sign. Hence S, has at least n — 2 zeros in {x, x,)\(x,, x,, ).
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Since S, also has a negative zero, S, has at least n—1 zeros outside
(x,.x,. ). However, by (6.4), S,(v,) and S,(x,, ;) have the same sign, so
the last zero of S, cannot lie in (x;, x; ).

Remark 6.2, Several other representations of S, in standard polyno-
mials can be derived. Obviously we can write

S(x)=3Y A,KP(x).
i=0

Then. for i€ {0, 1, ..., n},

nr ~x

w(x) K (x)Y dy=
Jo 70

A

w(x) x2S, () K'2(x)dx= (S, XTKP(x)).

i

The last member is zero for /< »n — 3. Hence

S,,(,\')=A,,K:'2)(.\')+A,, IK(Z) (x)+An ZK:,Z’:(-\‘)s

no1

where the coefficients 4,, 4, |, A, , depend on »n, N, and M. This means
that S, is quasi-orthogonal with respect to { K'?)(x)} of order 2. Marcellan
and Ronveaux [10] have proved that x2S () is quasi-orthogonal with
respect to {K,} of order 4.
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