Laguerre Polynomials Generalized to a Certain Discrete Sobolev Inner Product Space

H. G. Meijer

Delft University of Technology, Faculty of Technical Mathematics and Informatics, Mekelweg 4, 2628 CD Delft, The Netherlands

Communicated by A. P. Magnus

Received November 8, 1990; accepted in revised form December 31, 1991

We are concerned with the set of polynomials $\{S_n^{M,N}\}$ which are orthogonal with respect to the discrete Sobolev inner product

$$\langle f, g \rangle = \int_0^\infty w(x) f(x) g(x) dx + Mf(0) g(0) + Nf'(0) g'(0),$$

where w is a weight function, $M \ge 0$, $N \ge 0$. We show that these polynomials can be described as a linear combination of standard polynomials which are orthogonal with respect to the weight functions w(x), $x^2w(x)$, and $x^4w(x)$. The location of the zeros of $S_n^{M,N}$ is given in relation to the position of the zeros of the standard polynomials. \in 1993 Academic Press. Inc.

1. INTRODUCTION

Several authors generalize the concept of standard orthogonal polynomials to orthogonal polynomials in a Sobolev inner product space. We mention here Althammer [1], Brenner [3], Cohen [5], and more recently Bavinck, Meijer [2], Koekoek [7], Marcellan, Ronveaux [10], and Iserles, Koch, Nørsett, Sanz-Serna [6].

In the present paper we investigate the polynomials $\{S_n^{M,N}\}$ which are orthogonal with respect to the inner product

$$\langle f, g \rangle = \int_0^\infty w(x) f(x) g(x) dx + Mf(0) g(0) + Nf'(0) g'(0),$$

where w is a weight function, $M \ge 0$, $N \ge 0$.

We show that these polynomials can be expressed as

$$S_n^{M,N}(x) = B_1 K_n(x) + B_2 x K_{n-1}^{(2)}(x) + B_3 x^2 K_{n-2}^{(4)}(x), \qquad (1.1)$$

0021-9045/93 \$5.00

Copyright C 1993 by Academic Press, Inc. All rights of reproduction in any form reserved. where $\{K_n\}$, $\{K_n^{(2)}\}$ and $\{K_n^{(4)}\}$ are the sets of standard orthogonal polynomials (M = N = 0) with respect to the weight functions w(x), respectively, $x^2w(x)$ and $x^4w(x)$.

Furthermore we describe the position of the zeros of $S_n^{M,N}(x)$ in relation to the zeros of $K_n(x)$ and $K_{n-1}^{(2)}(x)$.

In Section 2 we recall some well-known results on the standard polynomials and derive some simple relations between K_n , $K_n^{(2)}$, and $K_n^{(4)}$. In Section 3 we define the polynomials $S_n^{M,N}$ and prove relation (1.1). In Section 4 the coefficients B_1 , B_2 , and B_3 in (1.1) are studied in more detail.

Section 5 contains some simple results on the zeros of $S_n^{M,N}$. Finally in Section 6 the location of the zeros of $S_n^{M,N}$ in relation to the zeros of K_n and $K_{n-1}^{(2)}$ is derived.

Some results in this paper are direct generalizations of results in [9], where the weight function is the Laguerre weight $w(x) = x^{\alpha}e^{-x}$ ($\alpha > -1$); the results in Section 6, however, are completely new.

2. THE STANDARD POLYNOMIALS

Let w denote a weight function on $(0, \infty)$, i.e., $w(x) \ge 0$, all moments

$$c_n = \int_0^\infty w(x) x^n dx, \qquad n = 0, 1, 2, ...$$

exist and $c_0 \neq 0$.

The support of w, i.e., the closure of the set $\{x \mid w(x) > 0\}$ may be a real subset of $[0, \infty)$; the point x = 0 may be outside or on the boundary of the support of w.

Consider the inner product

$$(f, g) = \int_0^\infty w(x) f(x) g(x) dx.$$
 (2.1)

Define the set of standard polynomials $\{K_n\}$ by

$$K_{0}(x) \equiv 1,$$

$$K_{n}(x) = \begin{cases} c_{0} & c_{1} & c_{2} & \cdots & c_{n} \\ c_{1} & c_{2} & c_{3} & \cdots & c_{n+1} \\ c_{2} & c_{3} & c_{4} & \cdots & c_{n+2} \\ \vdots & \vdots & \vdots & & \vdots \\ c_{n-1} & c_{n} & c_{n+1} & \cdots & c_{2n-1} \\ 1 & x & x^{2} & \cdots & x^{n} \end{cases} \quad \text{for } n \ge 1.$$

$$(2.2)$$

Then we have, for $0 \le i \le n-1$, that $(x^i, K_n) = 0$, showing that $\{K_n\}$ is an orthogonal set with respect to the inner product (2.1).

Let a_n denote the leading coefficient of $K_n(x)$, then we have

$$(x^n, K_n) = a_{n+1}$$
 for $n \ge 0$.

Then $(a_n x^n, K_n) = a_n a_{n+1}$. On the other hand, $a_n x^n = K_n(x) + p_{n-1}(x)$, for some polynomial p_{n-1} of degree $\leq n-1$. Then $(a_n x^n, K_n) = (K_n, K_n) > 0$. This implies $a_n a_{n+1} > 0$ for $n \geq 0$. Since $a_0 = 1$ all leading coefficients a_n are positive.

In the same way we can describe the sets of polynomials $\{K_n^{(2)}\}\$ and $\{K_n^{(4)}\}\$ which are orthogonal with respect to the weight functions $w(x)x^2$ and $w(x)x^4$ respectively. They are defined for $n \ge 1$ by the determinant (2.2) with c_i replaced by c_{i+2} , respectively c_{i+4} . For n=0 we define $K_0^{(2)}(x) = K_0^{(4)}(x) \equiv 1$.

We will often use the following result: all zeros of K_n , $K_n^{(2)}$ and $K_n^{(4)}$ are real, simple and lie in $(0, \infty)$.

Especially this implies, since the leading coefficients are positive,

$$\operatorname{sgn} K_n(0) = \operatorname{sgn} K_n^{(2)}(0) = \operatorname{sgn} K_n^{(4)}(0) = (-1)^n \quad \text{for} \quad n \ge 0, \quad (2.3)$$

$$\operatorname{sgn} K'_n(0) = \operatorname{sgn} K^{(2)'}_n(0) = \operatorname{sgn} K^{(4)'}_n(0) = (-1)^{n-1} \quad \text{for} \quad n \ge 1.$$
(2.4)

LEMMA 2.1. The following relations hold:

$$\int_{0}^{\infty} w(x) K_{n}^{(2)}(x) dx = K_{n+1}'(0) \qquad \text{for} \quad n \ge 0.$$
 (2.5)

$$\int_{0}^{\infty} w(x) x \, K_{n}^{(2)}(x) \, dx = -K_{n+1}(0) \qquad for \quad n \ge 0.$$
 (2.6)

$$\int_{0}^{\infty} w(x) x^{2} K_{n}^{(2)}(x) dx = \begin{cases} 0 & \text{for } n \ge 1 \\ c_{2} & \text{for } n = 0. \end{cases}$$
(2.7)

$$\int_{0}^{\infty} w(x) x^{2} K_{n}^{(4)}(x) dx = K_{n+1}^{(2)'}(0) \qquad \text{for} \quad n \ge 0.$$
 (2.8)

$$\int_0^\infty w(x) x^3 K_n^{(4)}(x) \, dx = -K_{n+1}^{(2)}(0) \quad \text{for} \quad n \ge 0.$$
 (2.9)

Proof. For $n \ge 1$ relations (2.5) and (2.6) follow from the determinantal representation (2.2). Relation (2.7) for $n \ge 1$ is a direct consequence of the orthogonality. For n = 0 we observe $K_n^{(2)}(x) \equiv 1$ and $K_1(x) = c_0 x - c_1$ and (2.5), (2.6), and (2.7) follow for n = 0.

Relation (2.8) and (2.9) are a direct consequence of (2.5), respectively (2.6).

3. The Polynomials S_n

Consider the inner product

$$\langle f, g \rangle = \int_0^\infty w(x) f(x) g(x) dx + Mf(0) g(0) + Nf'(0) g'(0),$$
 (3.1)

where $M \ge 0$, $N \ge 0$. Then

$$\langle x^i, x^j \rangle = c_{i+j} + \begin{cases} M & \text{if } i=j=0, \\ N & \text{if } i=j=1, \\ 0 & \text{otherwise.} \end{cases}$$

Define the set of polynomials $\{S_n^{M,N}\}$ by

$$S_{0}^{M,N}(x) \equiv 1, \ S_{1}^{M,N}(x) = \begin{vmatrix} c_{0} + M & c_{1} \\ 1 & x \end{vmatrix},$$

$$S_{n}^{M,N}(x) = \begin{vmatrix} c_{0} + M & c_{1} & c_{2} & \cdots & c_{n} \\ c_{1} & c_{2} + N & c_{3} & \cdots & c_{n+1} \\ c_{2} & c_{3} & c_{4} & \cdots & c_{n+2} \\ \vdots & \vdots & \vdots & \vdots \\ c_{n-1} & c_{n} & c_{n+1} & \cdots & c_{2n-1} \\ 1 & x & x^{2} & \cdots & x^{n} \end{vmatrix} \quad \text{for} \quad n \ge 2.$$
(3.2)

We often write $S_n(x)$ instead of $S_n^{M,N}(x)$. For $0 \le i \le n-1$ we have $\langle x^i, S_n \rangle = 0$. Let \tilde{a}_n denote the leading coefficient of S_n , then for $n \ge 2$

 $\langle x^n, S_n \rangle = \tilde{a}_{n+1}.$

For n = 0 we obtain $\langle 1, S_0 \rangle = c_0 + M = \tilde{a}_1$ and for n = 1,

$$\langle x, S_1 \rangle = \begin{vmatrix} c_0 + M & c_1 \\ c_1 & c_2 \end{vmatrix} + N(c_0 + M) = \tilde{a}_2.$$

Hence $\langle x^n, S_n \rangle = \tilde{a}_{n+1}$ for $n \ge 0$. Then $0 < \langle S_n, S_n \rangle = \tilde{a}_n \langle x^n, S_n \rangle = \tilde{a}_n \tilde{a}_{n+1}$ for $n \ge 0$. Since $\tilde{a}_0 = 1$, all leading coefficients are positive. We have found that $\{S_n\}$ is a set of orthogonal polynomials on $(0, \infty)$ with respect to the inner product (3.1).

Evaluating the determinant (3.2) it follows that S_n can be written as $S_n(x) = K_n(x) + Mx K_{n-1}^{(2)}(x) + MNx^2 K_n^{(4)}(x) + Nq_n(x)$, for some polynomial q_n of degree $\leq n$. Here the polynomials $K_n(x)$, $x K_{n-1}^{(2)}(x)$, and $x^2 K_n^{(4)}(x)$ occur. We observe that for $2 \leq i \leq n-1$,

$$\langle x^{i}, K_{n}(x) \rangle = 0,$$

$$\langle x^{i}, xK_{n-1}^{(2)}(x) \rangle = \int_{0}^{\infty} w(x) x^{2} x^{i-1} K_{n-1}^{(2)}(x) dx = 0,$$

$$\langle x^{i}, x^{2} K_{n-2}^{(4)}(x) \rangle = \int_{0}^{\infty} w(x) x^{4} x^{i-2} K_{n-2}^{(4)}(x) dx = 0.$$

Then S_{n} can be written as

$$S_n(x) = B_1 K_n(x) + B_2 x K_{n+1}^{(2)}(x) + B_3 x^2 K_{n-2}^{(4)}(x),$$

if the constants B_1 , B_2 , and B_3 are chosen in such a way that

$$\langle 1, S_n \rangle = 0 \quad \text{for} \quad n \ge 1.$$
 (3.3)

$$\langle x, S_n \rangle = 0 \quad \text{for} \quad n \ge 2.$$
 (3.4)

[As usual we define $K_{-1}^{(2)}(x) = K_{-1}^{(4)}(x) = K_{-2}^{(4)}(x) \equiv 0$.] Using (3.1), (2.6), (2.8), and (2.9) we conclude that B_1 , B_2 , and B_3 had to satisfy the equations

$$B_1 M K_n(0) - B_2 K_n(0) + B_3 K_{n-1}^{(2)'}(0) = 0 \qquad \text{for} \quad n \ge 1,$$

$$B_1 N K_n'(0) + B_2 N K_{n-1}^{(2)}(0) - B_3 K_{n-1}^{(2)}(0) = 0 \qquad \text{for} \quad n \ge 2.$$

We take

$$B_t = 1 - \frac{K_{n-1}^{(2)'}(0)}{K_n(0)} N$$
 for $n \ge 0$.

Then we find, using Cramer's rule for $n \ge 2$

$$B_{2} = M + \frac{K'_{n}(0)}{K_{n}(0)} \frac{K_{n-1}^{(2)'}(0)}{K_{n-1}^{(2)}(0)} N \quad \text{for} \quad n \ge 1,$$

$$B_{3} = MN + \frac{K'_{n}(0)}{K_{n-1}^{(2)}(0)} N \quad \text{for} \quad n \ge 2.$$

We have obtained the following result.

THEOREM 3.1. For $n \ge 0$ the polynomial $S_n^{M,N}$ can be written as

$$S_n^{M,N}(x) = B_1 K_n(x) + B_2 x K_{n-1}^{(2)}(x) + B_3 x^2 K_{n-2}^{(4)}(x),$$

where

$$B_1 = 1 - \alpha_n N,$$
 $B_2 = M + \alpha_n \beta_n N,$ $B_3 = MN + \beta_n N$

with

$$\alpha_n = \frac{K_{n-1}^{(2)'}(0)}{K_n(0)} \quad \text{for} \quad n \ge 0, \qquad \beta_n = \frac{K_n'(0)}{K_{n-1}^{(2)'}(0)} \quad \text{for} \quad n \ge 1.$$
(3.5)

Remark 3.1. It follows from (2.3) and (2.4) that $\alpha_n \ge 0$, $\beta_n > 0$, thus $B_2 \ge 0$, $B_3 \ge 0$. On the other hand, B_1 may be negative.

Remark 3.2. The theorem implies

$$S_n(0) = K_n(0)(1 - \alpha_n N),$$
 (3.6)

$$S'_{n}(0) = K'_{n}(0) + MK^{(2)}_{n-1}(0).$$
(3.7)

Then $S_n(0)$ is independent of M and $S'_n(0)$ is independent of N. This can also directly be concluded from the determinant (3.2). We observe that $S'_n(0)$ always has the same sign as $K'_n(0)$, i.e, $(-1)^{n-1}$. On the other hand, $S_n(0)$ and $K_n(0)$ have different signs if $B_1 = 1 - \alpha_n N$ is negative. We will use this fact in the discussion on the zeros of S_n .

4. MONOTONICITY OF α_n and β_n

In this section we prove that the sequences $\{\alpha_n\}$ and $\{\beta_n\}$ defined in (3.5) are monotonic.

We start with the well-known relation of Christoffel–Darboux for the polynomials $\{K_n^{(2)}\}$,

$$(x-u)\sum_{i=0}^{n} \frac{K_{i}^{(2)}(x) K_{i}^{(2)}(u)}{b_{i}b_{i+1}} = \frac{1}{b_{n+1}^{2}} \left\{ K_{n+1}^{(2)}(x) K_{n}^{(2)}(u) - K_{n}^{(2)}(x) K_{n+1}^{(2)}(u) \right\},$$

$$(4.1)$$

where b_n denotes the leading coefficient of $K_n^{(2)}(x)$.

THEOREM 4.1. The sequence $\{\beta_n\}$ is decreasing.

Proof. Multiply (4.1) by w(u) and integrate over $(0, \infty)$. Then (2.5) and (2.6) give

$$x \sum_{i=0}^{n} \frac{K_{i}^{(2)}(x)}{b_{i}b_{i+1}} K_{i+1}^{\prime}(0) + \sum_{i=0}^{n} \frac{K_{i}^{(2)}(x)}{b_{i}b_{i+1}} K_{i+1}^{\prime}(0)$$
$$= \frac{1}{b_{n+1}^{2}} \left\{ K_{n+1}^{(2)}(x) K_{n+1}^{\prime}(0) - K_{n}^{(2)}(x) K_{n+2}^{\prime}(0) \right\}$$

For x = 0 we obtain

$$\frac{1}{b_{n+1}^2}\left\{K_{n+1}^{(2)}(0) K_{n+1}'(0) - K_n^{(2)}(0) K_{n+2}'(0)\right\} = \sum_{i=0}^n \frac{K_i^{(2)}(0) K_{i+1}(0)}{b_i b_{i+1}}.$$

The right hand term is negative by (2.3). Since $K_n^{(2)}(0) K_{n+1}^{(2)}(0)$ is negative too, this implies

$$\beta_{n+1} = \frac{K'_{n+1}(0)}{K_n^{(2)}(0)} > \frac{K'_{n+2}(0)}{K_{n+1}^{(2)}(0)} = \beta_{n+2}.$$

THEOREM 4.2. The sequence $\{\alpha_n\}$ is increasing.

Proof. We now multiply (4.1) by uw(u) and integrate over $(0, \infty)$. With (2.6) and (2.7) we obtain

$$-x \sum_{i=0}^{n} \frac{K_{i}^{(2)}(x)}{b_{i}b_{i+1}} K_{i+1}(0) - 1$$

= $\frac{1}{b_{n+1}^{2}} \left\{ -K_{n+1}^{(2)}(x) K_{n+1}(0) + K_{n}^{(2)}(x) K_{n+2}(0) \right\}.$

Differentiating this relation and substituting x = 0 we obtain

$$-\sum_{i=0}^{n} \frac{K_{i}^{(2)}(0) K_{i+1}(0)}{b_{i}b_{i+1}} = \frac{1}{b_{n+1}^{2}} \left\{-K_{n+1}^{(2)'}(0) K_{n+1}(0) + K_{n}^{(2)'}(0) K_{n+2}(0)\right\}.$$

The left hand side is positive. Since $K_{n+1}(0) K_{n+2}(0)$ is negative this implies

$$\alpha_{n+2} = \frac{K_{n+1}^{(2)'}(0)}{K_{n+2}(0)} > \frac{K_n^{(2)'}(0)}{K_{n+1}(0)} = \alpha_{n+1}.$$

COROLLARY 4.1. In view of (3.6), Theorem 4.2 implies: if $S_n(0)$ and $K_n(0)$ have different signs for $n = n_0$, then they have different signs for all n with $n > n_0$. Remember sgn $K_n(0) = (-1)^n$.

THEOREM 4.3. The sequence $\{\alpha_n \beta_n\}$ is increasing.

Proof. By (3.5) we have

$$\alpha_n \beta_n = \frac{K'_n(0)}{K_n(0)} \frac{K^{(2)'}_{n-1}(0)}{K^{(2)}_{n-1}(0)} \quad \text{for} \quad n \ge 1.$$

Let $x_1 < x_2 < \cdots < x_n$ denote the zeros of K_n . Then

$$\left|\frac{K'_n(0)}{K_n(0)}\right| = \frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}.$$
(4.2)

Let $\eta_1 < \eta_2 < \cdots < \eta_{n+1}$ denote the zeros of K_{n+1} . It is well known that the zeros of K_n and K_{n+1} mutually separate each other, i.e.,

$$\eta_i < x_i < \eta_{i+1}$$
 for $i = 1, 2, ..., n$.

Hence

$$\left|\frac{K'_{n+1}(0)}{K_{n+1}(0)}\right| = \frac{1}{\eta_1} + \dots + \frac{1}{\eta_{n+1}} > \frac{1}{\eta_1} + \dots + \frac{1}{\eta_n} > \frac{1}{x_1} + \dots + \frac{1}{x_n} = \left|\frac{K'_n(0)}{K_n(0)}\right|.$$
(4.3)

The same result holds for $K_n^{(2)}$. This implies that $\{\alpha_n \beta_n\}$ is increasing.

Remark 4.1. Suppose that the weight function w is such that $|K'_n(0)/K_n(0)| \to \infty$ if $n \to \infty$. It follows from the proof of Theorem 4.3 that $\alpha_n \beta_n \to \infty$. Since, by Theorem 4.1, $\{\beta_n\}$ is decreasing we have $\alpha_n \to \infty$. Then (3.6) implies that $S_n(0)$ and $K_n(0)$ have different signs if n is sufficiently large.

We mention two situations in which this condition on the weight function w is satisfied.

A. Suppose that the support of w is contained in the finite interval [0, a]. Then the zeros of K_n are in (0, a) and by (4.2)

$$\left|\frac{K_n'(0)}{K_n(0)}\right| > \frac{n}{a}.$$

B. Suppose that the weight function w is uniquely determined by the sequence of moments $\{c_n\}$. Suppose moreover that 0 is in the support of w. Then it follows from [4, p. 58-60] that the smallest zero x_1 of K_n tends to 0 if $n \to \infty$. Then (4.2) implies

$$\left|\frac{K_n'(0)}{K_n(0)}\right| \to \infty$$

On the other hand, Koekoek [8] has given an example of a weight function for which $\{\alpha_n\}$ is bounded. Hence there exists a weight function which does not satisfy the condition $|K'_n(0)/K_n(0)| \to \infty$ if $n \to \infty$.

5. The Zeros of S_n : Introduction

Let the support of w be contained in the interval [0, a), where a may be finite or infinite.

THEOREM 5.1. The polynomial S_n has n real, simple zeros; at most one of them is outside (0, a). If S_n has a zero outside (0, a), then the zero is in $(-\infty, 0]$.

Proof. Let $v_1, v_2, ..., v_k$ denote the zeros of S_n in (0, a) of odd multiplicity. Put

$$\varphi(x) = (x - v_1)(x - v_2) \cdots (x - v_k).$$
(5.1)

Remark that for $k \ge 1$, $\varphi(0)$, and $\varphi'(0)$ have opposite sign. Then $\varphi(x) S_n(x)$ does not change sign on [0, a). Suppose degree $\varphi \le n-1$. Then $\langle \varphi, S_n \rangle = 0$, i.e.,

$$\int_0^\infty w(x) \, \varphi(x) \, S_n(x) \, dx + M \varphi(0) \, S_n(0) + N \varphi'(0) \, S_n'(0) = 0. \tag{5.2}$$

If N = 0 this is obviously impossible. Hence for N = 0 we have degree $\varphi = n$. If N > 0 relation (5.1) does not lead to a contradiction. Suppose now that, for N > 0, degree $\varphi < n - 2$. Then also $\langle x\varphi, S_n \rangle = 0$, i.e.,

$$\int_0^\infty w(x) \, x \varphi(x) \, S_n(x) \, dx + N \varphi(0) \, S'_n(0) = 0.$$
 (5.3)

It follows from (5.2) and (5.3) that $\varphi'(0) S'_n(0)$ and $\varphi(0) S'_n(0)$ should have the same sign. This is a contradiction. Hence, for N > 0, degree $\varphi = n$ or n-1 and the first part of the theorem follows.

Suppose now that degree $\varphi = n - 1$. Then there is one zero v_n of S_n outside (0, a). Relation (5.2) still holds. If $S_n(0) = 0$ then $v_n = 0$ is the last zero of S_n . If $S_n(0) \neq 0$ then (5.2) implies that $\varphi(0) S_n(0)$ and $\varphi'(0) S'_n(0)$ should have opposite sign. Since $\varphi(0)$ and $\varphi'(0)$ have opposite sign, we conclude that $S_n(0)$ and $S'_n(0)$ have the same sign. But then the last zero v_n cannot lie in $[a, \infty)$. Hence $v_n \in (-\infty, 0)$.

COROLLARY 5.1. Concerning the position of the zeros of S_n there are two different possible situations.

1. All *n* zeros $\xi_1 < \xi_2 < \cdots < \xi_n$ lie in $(0, a) \subset (0, \infty)$. Since the leading coefficient \tilde{a}_n of S_n is positive, then $\operatorname{sgn} S_n(0) = (-1)^n$, $\operatorname{sgn} S'_n(0) = (-1)^{n-1}$.

2. There are n-1 zeros $\xi_2 < \xi_3 < \cdots < \xi_n$ of S_n in $(0, a) \subset (0, \infty)$ and there is one zero $\xi_1 \in (-\infty, 0]$. In this case we write $\xi_1 = -\rho$, $\rho \ge 0$. Then

$$S_n(x) = \tilde{a}_n(x+\rho)(x-\xi_2)\cdots(x-\xi_n).$$
 (5.4)

If $\rho \neq 0$, then sgn $S_n(0) = (-1)^{n-1}$. It is stated in the proof of Theorem 5.1

that in this case $S_n(0)$ and $S'_n(0)$ should have the same sign. Hence sgn $S'_n(0) = (-1)^{n-1}$.

It follows from Remark 3.2, recall (2.3): sgn $K_n(0) = (-1)^n$, that the first situation occurs when $0 \le \alpha_n N < 1$ and the second one when $\alpha_n N \ge 1$.

THEOREM 5.2. If S_n has a zero in $(-\infty, 0]$ for $n = n_0$, then S_n has a zero in $(-\infty, 0)$ for all n with $n > n_0$.

Proof. This statement is a direct consequence of Corollaries 4.1 and 5.1. Finally we derive some simple estimates for the negative zero $-\rho$ of S_n .

THEOREM 5.3. Suppose that S_n has a zero $-\rho \in (-\infty, 0)$. Then

(a) $\rho < \xi_2$, where ξ_2 denotes the smallest positive zero of S_n ,

(b) if the support of w is contained in the finite interval [0, a), then $\rho < a/(n-1)$,

(c) if $M \neq 0$, then $\rho < \frac{1}{2}\sqrt{N/M}$.

Proof. Corollary 5.1.2 implies

$$0 < \frac{S'_n(0)}{S_n(0)} = \frac{1}{\rho} - \frac{1}{\xi_2} - \frac{1}{\xi_3} \cdots - \frac{1}{\xi_n}$$

Hence

$$\frac{1}{\rho} > \frac{1}{\xi_2} + \frac{1}{\xi_3} + \dots + \frac{1}{\xi_n}.$$
(5.5)

Then $1/\rho > 1/\xi_2$, i.e., $\rho < \xi_2$. If *a* is finite, then $\xi_2 < \xi_3 < \cdots < \xi_n < a$. Then (5.5) gives

$$\frac{1}{\rho} > \frac{n-1}{a}$$

Hence $\rho < a/(n-1)$. In order to prove (c) we remark that by (5.1) and (5.4), S_n can be written as

$$S_n(x) = \tilde{a}_n(x+\rho) \, \varphi(x).$$

Then $\varphi(x) S_n(x)$ is non-negative on $[0, \infty)$ and (5.2) implies

$$M\varphi(0) S_n(0) + N\varphi'(0) S'_n(0) < 0$$

or

$$M\rho\varphi(0)^{2} + N\varphi'(0)\{\varphi'(0) + \rho\varphi(0)\} < 0.$$

We obtain

$$\rho\{M\varphi(0)^2 + N\varphi'(0)^2\} < -N\varphi'(0)\,\varphi(0) = N\,|\varphi'(0)\,\varphi(0)|.$$

On the other hand,

$$M\varphi(0)^2 + N\varphi'(0)^2 \ge 2\sqrt{MN} |\varphi(0)\varphi'(0)|.$$

Hence $\rho < \frac{1}{2}\sqrt{N/M}$.

6. LOCATION OF THE ZEROS OF S_n

The following observation is due to Christoffel (see [11, p. 30]). Put

$$x^{2}Q_{n-1}(x) = \begin{vmatrix} K_{n-1}(x) & K_{n}(x) & K_{n+1}(x) \\ K_{n-1}(0) & K_{n}(0) & K_{n+1}(0) \\ K_{n-1}'(0) & K_{n}'(0) & K_{n+1}'(0) \end{vmatrix} \quad \text{for } n \ge 1.$$
(6.1)

Then obviously Q_{n-1} is a polynomial of degree n-1 with leading coefficient, $a_{n+1}\{K_{n-1}(0) K'_n(0) - K_n(0) K'_{n-1}(0)\} \neq 0$ (compare (4.3)). Moreover

$$\int_0^\infty w(x) x^i x^2 Q_{n-1}(x) \, dx = 0 \qquad \text{for} \quad i = 0, \, 1, \, ..., \, n-2.$$

Hence

$$Q_{n-1}(x) = \operatorname{const} K_{n-1}^{(2)}(x).$$
 (6.2)

LEMMA 6.1. Between two consecutive zeros of K_n there is exactly one zero of $K_{n-1}^{(2)}$.

Proof. Using (6.1), (6.2), and the recurrence relation we may write

$$x^{2}K_{n-1}^{(2)}(x) = (d_{1}x + d_{2}) K_{n}(x) + d_{3}K_{n-1}(x)$$

for some constants d_1, d_2, d_3 . Since $K_n(0) \neq 0$ we have $d_3 \neq 0$. Let x_i and x_{i+1} denote two consecutive zeros of K_n . It is well known that K_{n-1} has exactly one zero in (x_i, x_{i+1}) . Hence $K_{n-1}(x_i)$ and $K_{n-1}(x_{i+1})$ have opposite sign. Then also $K_{n-1}^{(2)}(x_i)$ and $K_{n-1}^{(2)}(x_{i+1})$ have opposite sign. This implies that $K_{n-1}^{(2)}$ has at least one zero in (x_i, x_{i+1}) . Since this holds for i = 1, 2, ..., n-1 we conclude that $K_{n-1}^{(2)}$ has exactly one zero in (x_i, x_{i+1}) .

COROLLARY 6.1. Since the zeros of K_n and $K_n^{(2)}$ mutually separate each other we can also state that between two consecutive zeros of $K_{n-1}^{(2)}$ there is exactly one zero of K_n . Reading Lemma 6.1 with the weight function w replaced by $x^2w(x)$ we obtain that between two consecutive zeros of $K_{n-1}^{(2)}$ there is exactly one zero of $K_{n-2}^{(2)}$.

LEMMA 6.2. Let $y_1 < y_2 < \cdots < y_{n-1}$ denote the zeros of $K_{n-1}^{(2)}$. Then $K_n(y_i)$ and $K_n^{(4)}(y_i)$ have opposite sign. The sign of $K_n^{(4)}(y_i)$ is $(-1)^{n-1-i}$.

Proof. Let x_n denote the largest zero of K_n and z_{n-2} the largest zero of $K_n^{(4)}$. Lemma 6.1 implies $z_{n-2} < y_{n-1} < x_n$. Since all leading coefficients are positive we have

$$K_n(y_{n-1}) < 0 < K_n^{(4)}(y_{n-1})$$

and the lemma is proved for i = n - 1.

Running from y_{n-1} to y_{n-2} we pass exactly one zero of K_n and exactly one zero of $K_n^{(4)}$. Then in y_{n-2} we conclude that $K_n(y_{n-2})$ and $K_n^{(4)}(y_{n-2})$ have again different sign. Moreover the sign of the latter is -1. Hence the lemma is proved for i = n - 2. Proceeding in this way we prove the lemma for i = n - 1, n - 2, n - 3, ..., 1.

The lemma enables us to give a complete description of the position of the zeros of S_n if S_n has a negative zero.

THEOREM 6.1. Let $y_1 < y_2 < \cdots < y_{n-1}$ denote the zeros of $K_{n-1}^{(2)}$. Suppose that S_n has a zero in $(-\infty, 0]$. Then S_n has a zero in $(0, y_1)$ and a zero in every interval $(y_i, y_{i+1}), i = 1, 2, ..., n-2$. The non-positive zero lies in $(-y_1, 0]$.

Proof. By Theorem 3.1 we have

$$S_n(y_i) = (1 - \alpha_n N) K_n(y_i) + B_3 y_i^2 K_n^{(4)} (y_i),$$

where $B_3 > 0$ and $1 - \alpha_n N \le 0$ (compare Corollary 5.1). Then Lemma 6.2 implies sgn $S_n(y_i) = (-1)^{n-1-i}$. Hence every interval (y_i, y_{i+1}) , i = 1, 2, ..., n-2 contains at least one zero of S_n .

Moreover Lemma 6.2 implies sgn $S_n(y_1) = (-1)^n$. Suppose $S_n(0) \neq 0$. Then Corollary 5.1.2 says sgn $S_n(0) = (-1)^{n-1}$ and there is at least one zero of S_n in $(0, y_1)$. If $S_n(0) = 0$ then, again by Corollary 5.1.2, we have sgn $S'_n(0) = (-1)^{n-1}$ and again there has to be at least one zero of S_n in $(0, y_1)$. Since S_n has by assumption n-1 zeros in $(0, \infty)$ every interval $(0, y_1)$, (y_i, y_{i+1}) , i = 1, 2, ..., n-2 has exactly one zero of S_n .

Finally let $-\rho$ denote the non-positive zero of S_n and ξ_2 the smallest positive zero of S_n . Then by Theorem 5.3(a), $\rho < \xi_2 < y_1$.

It is possible to represent S_n as a linear combination of $K_n(x)$, $xK_n^{(2)}(x)$, and $K_n^{(2)}(x)$. However, the coefficients are more complicated than those in Theorem 3.1.

THEOREM 6.2. For
$$n \ge 0$$
 the polynomials $S_n^{M,N}$ can be written as
 $S_n^{M,N}(x) = D_1 K_n(x) + D_2 x K_{n-1}^{(2)}(x) + D_3 K_{n-1}^{(2)}(x),$ (6.3)

where

$$D_{1} = 1 - \frac{N}{K_{n}(0)^{2}} \left\{ K_{n}'(0) K_{n-1}^{(2)}(0) + K_{n}(0) K_{n-1}^{(2)'}(0) \right\} - MN \frac{K_{n-1}^{(2)'}(0)^{2}}{K_{n}(0)^{2}},$$

$$D_{2} = M + N \frac{K_{n}'(0)^{2}}{K_{n}(0)^{2}} + \frac{MN}{K_{n}(0)^{2}} \left\{ K_{n}'(0) K_{n-1}^{(2)'}(0) - K_{n}(0) K_{n-1}^{(2)'}(0) \right\},$$

$$D_{3} = N \frac{K_{n}'(0)}{K_{n}(0)} + MN \frac{K_{n-1}^{(2)'}(0)}{K_{n}(0)}.$$

Proof. We proceed as in the proof of Theorem 3.1. Obviously the righthand member of (6.3) is orthogonal with respect to the inner product (3.1) on x^i for $2 \le i \le n-1$ for every choice of D_1 , D_2 , and D_3 . So we have to choose the coefficients in such a way that also $\langle 1, S_n \rangle = 0$ and $\langle x, S_n \rangle = 0$. This gives the equations

$$D_1 M K_n(0) - D_2 K_n(0) + D_3 (K'_n(0) + M K_n^{(2)}(0)) = 0,$$

$$D_1 N K'_n(0) - D_2 N K_n^{(2)}(0) + D_3 (-K_n(0) + N K_n^{(2)'}(0)) = 0.$$

From this system the coefficients can be derived.

Observe that the coefficients of N and MN in D_1 are positive, so D_1 may be zero for suitable choices of N and M. If $D_1 = 0$, then $S_n(x) = (D_2x + D_3) K_{n-1}^{(2)}(x)$ and all zeros of $K_{n-1}^{(2)}(x)$ are zeros of S_n .

Finally we describe the behaviour of the zeros of $S_n = S_n^N$ for fixed *n* and *M* and variable *N*. Let, as before, $y_1 < y_2 < \cdots < y_{n-1}$ denote the zeros of $K_n^{(2)}$ and $\xi_1 < \xi_2 < \cdots < \xi_n$ those of S_n^N . If N = 0, then $S_n^N = K_n$ and by Lemma 6.1 the location of the zeros of S_n is as follows:

$$\xi_1 < y_1, \quad \xi_n > y_{n-1}, \quad \xi_{i+1} \in (y_i, y_{i+1}) \quad \text{for} \quad i = 1, 2, ..., n-2.$$
 (a)

On the other hand, if $N = N_1 > \alpha_n^{-1}$ then by Theorem 6.1 the location of the zeros is

$$\xi_1 < \xi_2 < y_1, \qquad \xi_{i+1} \in (y_{i-1}, y_i) \quad \text{for} \quad i = 2, ..., n-1.$$
 (b)

The zeros ξ_{i+1} are continuous functions of N. If N runs from N=0 to

 $N = N_1$ the situation (a) is continuously transformed in the situation (b). Hence ξ_{i+1} had to pass through y_i (i = 1, 2, ..., n-1). By Theorem 6.2,

$$S_n^N(y_i) = D_1 K_n(y_i), \quad i = 1, 2, ..., n-1,$$

where $D_1 = D_1(N)$ is a linear function of N. (Recall that M and n are fixed.) Hence there is exactly one value $N_0 \in (0, N_1)$ such that $D_1(N_0) = 0$. For this value N_0 it follows $\xi_{i+1} = y_i$ for i = 1, 2, ..., n-1.

Now we may conclude that if $N \in [0, N_0)$, then the zeros of S_n^N are located according to position (a), if $N > N_0$, then the zeros of S_n^N are in position (b).

COROLLARY 6.2. Either all zeros of $K_{n-1}^{(2)}$ are zeros of S_n , or between two consecutive zeros of $K_n^{(2)}$ there is exactly one zero of S_n .

Remark 6.1. In general it is *not* true, that between two consecutive zeros of K_n , there is a zero of S_n . Let $x_1 < x_2 < \cdots < x_n$ denote the zeros of K_n . By Theorem 6.2,

$$S_n(x_i) = (D_2 x_i + D_3) K_{n-1}^{(2)}(x_i), \qquad i = 1, 2, ..., n.$$
(6.4)

Take $N = M \rightarrow \infty$, then $-D_3/D_2$ converges to

$$\tau = \frac{K_n^{(2)}(0) K_n(0)}{K_n(0) K_{n-1}^{(2)}(0) - K_n'(0) K_{n-1}^{(2)}(0)}$$

Now

$$\frac{1}{\tau} = \frac{K_{n-1}^{(2)'}(0)}{K_{n-1}^{(2)}(0)} - \frac{K_{n}'(0)}{K_{n}(0)} = \sum_{i=1}^{n} \frac{1}{x_{i}} - \sum_{i=1}^{n-1} \frac{1}{y_{i}}.$$

By Lemma 6.1, $x_i < y_i < x_{i+1}$, i = 1, 2, ..., n - 1. Hence

$$\frac{1}{x_n} < \frac{1}{\tau} < \frac{1}{x_1},$$

i.e., $x_1 < \tau < x_n$.

This implies that we can choose N and M in such a way that the zero T of $D_1x + D_3$ is between two consecutive zeros, say x_j and x_{j+1} of K_n . Let moreover N be chosen so large that S_n has a negative zero. If $i \in \{1, 2, ..., n-1\}, i \neq j$, then by (6.4) and Lemma 6.1, $S_n(x_i)$ and $S_n(x_{i+1})$ have opposite sign. Hence S_n has at least n-2 zeros in $(x_1, x_n) \setminus (x_i, x_{i+1})$. Since S_n also has a negative zero, S_n has at least n-1 zeros outside (x_j, x_{j+1}) . However, by (6.4), $S_n(x_j)$ and $S_n(x_{j+1})$ have the same sign, so the last zero of S_n cannot lie in (x_j, x_{j+1}) .

Remark 6.2. Several other representations of S_n in standard polynomials can be derived. Obviously we can write

$$S_n(x) = \sum_{i=0}^n A_i K_i^{(2)}(x).$$

Then, for $i \in \{0, 1, ..., n\}$,

$$A_i \int_0^\infty w(x) \, x^2 K_i^{(2)}(x)^2 \, dx = \int_0^\infty w(x) \, x^2 S_n(x) \, K_i^{(2)}(x) \, dx = \langle S_n, x^2 K_i^{(2)}(x) \rangle.$$

The last member is zero for $i \leq n-3$. Hence

$$S_n(x) = A_n K_n^{(2)}(x) + A_{n-1} K_{n-1}^{(2)}(x) + A_{n-2} K_{n-2}^{(2)}(x),$$

where the coefficients A_n , A_{n-1} , A_{n-2} depend on n, N, and M. This means that S_n is quasi-orthogonal with respect to $\{K_n^{(2)}(x)\}$ of order 2. Marcellan and Ronveaux [10] have proved that $x^2S_n(x)$ is quasi-orthogonal with respect to $\{K_n\}$ of order 4.

ACKNOWLEDGMENT

I thank the referees for their useful remarks.

REFERENCES

- 1. P. ALTHAMMER, Eine Erweiterung des Orthogonalitätsbegriffes bei Polynomen und deren Anwendung auf die beste Approximation, J. Reine Angew. Math. 211 (1962), 192-204.
- H. BAVINCK AND H. G. MEJER. On orthogonal polynomials with respect to an inner product involving derivatives: Zeros and recurrence relations, *Indag. Math. N.S.* 1 (1990), 7-14.
- J. BRENNER, Uber eine Erweiterung des Orthogonalitätsbegriffes bei Polynomen, in "Constructive Theory of Functions," Akadémiai Kiadó, Budapest, 1972.
- T. S. CHIHARA, "An Introduction to Orthogonal Polynomials," Gordon and Breach, New York, 1978.
- 5. E. A. COHEN, Zero distribution and behavior of orthogonal polynomials in the Sobolev space $W^{1,2}[-1, 1]$, SIAM J. Math. Anal. 6 (1975), 105–116.
- A. ISERLES, P. E. KOCH, S. P. NØRSETT, AND J. M. SANZ-SERNA, On polynomials orthogonal with respect to certain Sobolev inner products, *J. Approx. Theory* 65 (1991), 151-175.

- 7. R. KOEKOEK, Generalizations of Laguerre polynomials, J. Math. Anal. Appl. 153 (1990), 576-590.
- R. KOEKOEK, A generalization of Moak's q-Laguerre polynomials, Canad. J. Math. 42 (1990), 280-303.
- 9. R. KOEKOEK AND H. G. MEIJER, A generalization of Laguerre polynomials, SIAM J. Math. Anal., to appear.
- 10. F. MARCELLAN AND A. RONVEAUX, On a class of polynomials orthogonal with respect to a discrete Sobolev inner product, *Indag. Math. N.S.* 1 (1990), 451-464.
- 11. G. SZEGÖ, Orthogonal polynomials, in "American Mathematical Society Colloquium Publications," Vol. 23 (1939), 4th ed., Providence, R1, 1975.