Laguerre Polynomials Generalized to a Certain Discrete Sobolev Inner Product Space

H. G. Meijer
Delft Unitersity of Technology, Faculty of Technical Mathematics and Informatics, Mekelueg 4, 2628 CD Delft. The Netherlands

Communicated by A. P. Magnus
Received November 8, 1990; accepted in revised form December 31, 1991

We are concerned with the set of polynomials $\left\{S_{n}^{M, N}\right\}$ which are orthogonal with respect to the discrete Sobolev inner product

$$
\langle f, g\rangle=\int_{0}^{x} u^{\prime}(x) f(x) g(x) d x+M f(0) g(0)+N f^{\prime}(0) g^{\prime}(0)
$$

where w is a weight function, $M \geqslant 0, N \geqslant 0$. We show that these polynomials can be described as a linear combination of standard polynomials which are orthogonal with respect to the weight functions $w(x), x^{2} w(x)$, and $x^{4} w(x)$. The location of the zeros of $S_{n}^{M, .4}$ is given in relation to the position of the zeros of the standard polynomials. 1 1993 Academic Press. Inc.

1. Introduction

Several authors generalize the concept of standard orthogonal polynomials to orthogonal polynomials in a Sobolev inner product space. We mention here Althammer [1], Brenner [3], Cohen [5], and more recently Bavinck, Meijer [2], Koekoek [7], Marcellan, Ronveaux [10], and Iserles, Koch, Nørsett, Sanz-Serna [6].

In the present paper we investigate the polynomials $\left\{S_{n}^{M, N}\right\}$ which are orthogonal with respect to the inner product

$$
\langle f, g\rangle=\int_{0}^{x} w(x) f(x) g(x) d x+M f(0) g(0)+N f^{\prime}(0) g^{\prime}(0)
$$

where w is a weight function, $M \geqslant 0, N \geqslant 0$.
We show that these polynomials can be expressed as

$$
\begin{equation*}
S_{n}^{M+N}(x)=B_{1} K_{n}(x)+B_{2} x K_{n}^{(2)}(x)+B_{3} x^{2} K_{n}^{(4)}(x), \tag{1.1}
\end{equation*}
$$

1
where $\left\{K_{n}\right\},\left\{K_{n}^{(2)}\right\}$ and $\left\{K_{n}^{(4)}\right\}$ are the sets of standard orthogonal polynomials ($M=N=0$) with respect to the weight functions $w(x)$, respectively, $x^{2} w(x)$ and $x^{4} w^{\prime}(x)$.

Furthermore we describe the position of the zeros of $S_{n}^{M, N}(x)$ in relation to the zeros of $K_{n \prime}(x)$ and $K_{n}^{(2)}{ }_{1}(x)$.

In Section 2 we recall some well-known results on the standard polynomials and derive some simple relations between $K_{n}, K_{n}^{(2)}$, and $K_{n}^{(4)}$. In Section 3 we define the polynomials $S_{n}^{M, N}$ and prove relation (1.1). In Section 4 the coefficients B_{1}, B_{2}, and B_{3} in (1.1) are studied in more detail.

Section 5 contains some simple results on the zeros of S_{n}^{M+N}. Finally in Section 6 the location of the zeros of $S_{n}^{M, N}$ in relation to the zeros of K_{n} and $K_{n}^{(2)}{ }_{1}$ is derived.

Some results in this paper are direct generalizations of results in [9], where the weight function is the Laguerre weight $w(x)=x^{x} e^{x}(\alpha>-1)$; the results in Section 6, however, are completely new.

2. The Standari) Polynomials

Let w denote a weight function on $(0, \infty)$, i.e., $w(x) \geqslant 0$, all moments

$$
c_{n}=\int_{0}^{x} w(x) x^{n} d x, \quad n=0,1,2, \ldots
$$

exist and $c_{0} \neq 0$.
The support of w, i.e., the closure of the set $\{x \mid w(x)>0\}$ may be a real subset of $[0, \infty)$; the point $x=0$ may be outside or on the boundary of the support of w.

Consider the inner product

$$
\begin{equation*}
(f, g)=\int_{0}^{\infty} w(x) f(x) g(x) d x \tag{2.1}
\end{equation*}
$$

Define the set of standard polynomials $\left\{K_{n}\right\}$ by

$$
\begin{align*}
& K_{0}(x) \equiv 1, \\
& K_{n}(x)=\left|\begin{array}{ccccc}
c_{0} & c_{1} & c_{2} & \cdots & c_{n} \\
c_{1} & c_{2} & c_{3} & \cdots & c_{n+1} \\
c_{2} & c_{3} & c_{4} & \cdots & c_{n+2} \\
\vdots & \vdots & \vdots & & \vdots \\
c_{n} & 1 & c_{n} & c_{n+1} & \cdots \\
1 & c_{2 n}, \\
1 & x^{2} & \cdots & x^{n}
\end{array}\right| \quad \text { for } n \geqslant 1 . \tag{2.2}
\end{align*}
$$

Then we have, for $0 \leqslant i \leqslant n-1$, that $\left(x^{i}, K_{n}\right)=0$, showing that $\left\{K_{n}\right\}$ is an orthogonal set with respect to the inner product (2.1).

Let a_{n} denote the leading coefficient of $K_{n}(x)$, then we have

$$
\left(x^{n}, K_{n}\right)=a_{n+1} \quad \text { for } \quad n \geqslant 0 .
$$

Then $\left(a_{n} x^{n}, K_{n}\right)=a_{n} a_{n+1}$. On the other hand, $a_{n} x^{n}=K_{n}(x)+p_{n} \quad$, (x), for some polynomial p_{n}, of degree $\leqslant n-1$. Then $\left(a_{n} x^{\prime \prime}, K_{n}\right)=\left(K_{n}, K_{n}\right)>0$. This implies $a_{n} a_{n+1}>0$ for $n \geqslant 0$. Since $a_{0}=1$ all leading coefficients a_{n} are positive.

In the same way we can describe the sets of polynomials $\left\{K_{n}^{12\}}\right\}$ and $\left\{K_{n}^{(4)}\right\}$ which are orthogonal with respect to the weight functions $w(x) . x^{2}$ and $w(x) x^{4}$ respectively. They are defined for $n \geqslant 1$ by the determinant (2.2) with c_{i} replaced by c_{i+2}, respectively c_{i+4}. For $n=0$ we define $K_{0}^{\prime 2)}(x)=K_{0}^{(4)}(x) \equiv 1$.

We will often use the following result: all zeros of $K_{n}, K_{n}^{(2)}$ and $K_{n}^{(4)}$ are real, simple and lie in $(0, \infty)$.

Especially this implies, since the leading coefficients are positive,

$$
\begin{array}{lll}
\operatorname{sgn} K_{n}(0)=\operatorname{sgn} K_{n}^{(2)}(0)=\operatorname{sgn} K_{n}^{(4)}(0)=(-1)^{n} & \text { for } n \geqslant 0, \\
\operatorname{sgn} K_{n}^{\prime}(0)=\operatorname{sgn} K_{n}^{(2)}(0)=\operatorname{sgn} K_{n}^{(4)}(0)=(-1)^{n} \quad \text { for } & n \geqslant 1 . \tag{2.4}
\end{array}
$$

Lemma 2.1. The following relations hold:

$$
\begin{align*}
& \int_{0}^{x} w(x) K_{n}^{(2)}(x) d x=K_{n+1}^{\prime}(0) \quad \text { for } n \geqslant 0 . \tag{2.5}\\
& \int_{0}^{x} n(x) x K_{n}^{(2)}(x) d x=-K_{n+1}(0) \text { for } n \geqslant 0 \text {. } \tag{2.6}\\
& \int_{0}^{x} w(x) x^{2} K_{n}^{(2)}(x) d x= \begin{cases}0 & \text { for } n \geqslant 1 \\
c_{2} & \text { for } n=0 .\end{cases} \tag{2.7}\\
& \int_{0}^{x} w(x) x^{2} K_{n}^{(4)}(x) d x=K_{n+1}^{(2)}(0) \text { for } n \geqslant 0 \text {. } \tag{2.8}\\
& \int_{0}^{x} w(x) \cdot x^{3} K_{n}^{(4)}(x) d x=-K_{n+1}^{(2)}(0) \text { for } n \geqslant 0 \text {. } \tag{2.9}
\end{align*}
$$

Proof. For $n \geqslant 1$ relations (2.5) and (2.6) follow from the determinantal representation (2.2). Relation (2.7) for $n \geqslant 1$ is a direct consequence of the orthogonality. For $n=0$ we observe $K_{n}^{(2)}(x) \equiv 1$ and $K_{1}(x)=c_{0} x-c_{1}$ and (2.5), (2.6), and (2.7) follow for $n=0$.

Relation (2.8) and (2.9) are a direct consequence of (2.5), respectively (2.6).

3. The Polynomials S_{n}

Consider the inner product

$$
\begin{equation*}
\langle f, g\rangle=\int_{0}^{x} w(x) f(x) g(x) d x+M f(0) g(0)+N f^{\prime}(0) g^{\prime}(0), \tag{3.1}
\end{equation*}
$$

where $M \geqslant 0, N \geqslant 0$. Then

$$
\left\langle x^{i}, x^{\prime}\right\rangle=c_{i+j}+ \begin{cases}M & \text { if } \quad i=j=0, \\ N & \text { if } \quad i=j=1, \\ 0 & \text { otherwise } .\end{cases}
$$

Define the set of polynomials $\left\{S_{n}^{M, N}\right\}$ by

$$
\begin{gather*}
S_{0}^{M, N}(x) \equiv 1, S_{1}^{M, N}(x)=\left|\begin{array}{cccc}
c_{0}+M & c_{1} \\
1 & x
\end{array}\right|, \\
S_{n}^{M, N}(x)=\left|\begin{array}{ccccc}
c_{0}+M & c_{1} & c_{2} & \cdots & c_{n} \\
c_{1} & c_{2}+N & c_{3} & \cdots & c_{n+1} \\
c_{2} & c_{3} & c_{4} & \cdots & c_{n+2} \\
\vdots & \vdots & \vdots & & \vdots \\
c_{n} & c_{n} & c_{n+1} & \cdots & c_{2 n}, \\
1 & x & x^{2} & \cdots & x^{n}
\end{array}\right| \text { for } n \geqslant 2 . \tag{3.2}
\end{gather*}
$$

We often write $S_{n}(x)$ instead of $S_{n}^{M, N}(x)$. For $0 \leqslant i \leqslant n-1$ we have $\left\langle x^{i}, S_{n}\right\rangle=0$. Let \tilde{a}_{n} denote the leading coefficient of S_{n}, then for $n \geqslant 2$

$$
\left\langle x^{n}, S_{n}\right\rangle=\tilde{a}_{n+1} .
$$

For $n=0$ we obtain $\left\langle 1, S_{0}\right\rangle=c_{0}+M=\tilde{a}_{1}$ and for $n=1$,

$$
\left\langle x, S_{1}\right\rangle=\left|\begin{array}{cc}
c_{0}+M & c_{1} \\
c_{1} & c_{2}
\end{array}\right|+N\left(c_{0}+M\right)=\tilde{a}_{2} .
$$

Hence $\left\langle x^{n}, S_{n}\right\rangle=\tilde{a}_{n+1}$ for $n \geqslant 0$. Then $0<\left\langle S_{n}, S_{n}\right\rangle=\tilde{a}_{n}\left\langle x^{n}, S_{n}\right\rangle=$ $\tilde{a}_{n} \tilde{a}_{n+1}$ for $n \geqslant 0$. Since $\tilde{a}_{0}=1$, all leading coefficients are positive. We have found that $\left\{S_{n}\right\}$ is a set of orthogonal polynomials on $(0, \infty)$ with respect to the inner product (3.1).

Evaluating the determinant (3.2) it follows that S_{n} can be written as $S_{n}(x)=K_{n}(x)+M x K_{n-1}^{(2)}(x)+M N x^{2} K_{n}^{(4)}(x)+N q_{n}(x)$, for some polynomial q_{n} of degree $\leqslant n$. Here the polynomials $K_{n}(x), x K_{n}^{(2)},(x)$, and $x^{2} K_{n}^{(4)}{ }_{2}(x)$ occur. We observe that for $2 \leqslant i \leqslant n-1$,

$$
\begin{aligned}
& \left\langle x^{i}, K_{n}(x)\right\rangle=0, \\
& \left\langle x^{i}, x K_{n}^{(2)}(x)\right\rangle=\int_{0}^{x} w(x) x^{2} x^{i-1} K_{n-1}^{(2)}(x) d x=0, \\
& \left\langle x^{i}, x^{2} K_{n}^{(4)}{ }_{2}(x)\right\rangle=\int_{0}^{x} w(x) x^{4} x^{i}{ }^{2} K_{n}^{(4)}{ }_{2}(x) d x=0 .
\end{aligned}
$$

Then S_{n} can be written as

$$
S_{n}(x)=B_{1} K_{n}(x)+B_{2} x K_{n}^{(2)}(x)+B_{3} x^{2} K_{n}^{(4)}{ }_{2}(x)
$$

if the constants B_{1}, B_{2}, and B_{3} are chosen in such a way that

$$
\begin{array}{lll}
\left\langle 1, S_{n}\right\rangle=0 & \text { for } & n \geqslant 1 . \\
\left\langle x, S_{n}\right\rangle=0 & \text { for } & n \geqslant 2 \tag{3.4}
\end{array}
$$

[As usual we define $K_{1}^{(2)}(x)=K_{1}^{(4)}(x)=K_{-2}^{(4)}(x) \equiv 0$.] Using (3.1), (2.6), (2.8), and (2.9) we conclude that B_{1}, B_{2}, and B_{3} had to satisfy the equations

$$
\begin{array}{ll}
B_{1} M K_{n}(0)-B_{2} K_{n}(0)+B_{3} K_{n-1}^{(2)}(0)=0 & \text { for } n \geqslant 1, \\
B_{1} N K_{n}^{\prime}(0)+B_{2} N K_{n-1}^{(2)}(0)-B_{3} K_{n-1}^{(2)}(0)=0 & \text { for } n \geqslant 2 .
\end{array}
$$

We take

$$
B_{1}=1-\frac{K_{n}^{(2)}(0)}{K_{n}(0)} N \quad \text { for } n \geqslant 0
$$

Then we find, using Cramer's rule for $n \geqslant 2$

$$
\begin{array}{ll}
B_{2}=M+\frac{K_{n}^{\prime}(0)}{K_{n}(0)} \frac{K_{n}^{(2)}(0)}{K_{n}^{\prime 2!}(0)} N & \text { for } n \geqslant 1, \\
B_{3}=M N+\frac{K_{n}^{\prime}(0)}{K_{n-1}^{(2)}(0)} N & \text { for } n \geqslant 2 .
\end{array}
$$

We have obtained the following result.
Theorem 3.1. For $n \geqslant 0$ the polynomial S_{n}^{M+N} can be written as

$$
S_{n}^{M, N}(x)=B_{1} K_{n}(x)+B_{2} x K_{n}^{(2)}{ }_{1}(x)+B_{3} x^{2} K_{n}^{(4)}{ }_{2}(x),
$$

where

$$
B_{1}=1-\alpha_{n} N, \quad B_{2}=M+\alpha_{n} \beta_{n} N, \quad B_{3}=M N+\beta_{n} N,
$$

with
$\alpha_{n}=\frac{K_{n}^{(2)_{1}}(0)}{K_{n}(0)} \quad$ for $n \geqslant 0, \quad \beta_{n}=\frac{K_{n}^{\prime}(0)}{K_{n}^{\prime 2)}(0)} \quad$ for $n \geqslant 1$.
Remark 3.1. It follows from (2.3) and (2.4) that $\alpha_{n} \geqslant 0, \beta_{n}>0$, thus $B_{2} \geqslant 0, B_{3} \geqslant 0$. On the other hand, B_{1} may be negative.

Remark 3.2. The theorem implies

$$
\begin{align*}
& S_{n}(0)=K_{n}(0)\left(1-\alpha_{n} N\right) \tag{3.6}\\
& S_{n}^{\prime}(0)=K_{n}^{\prime}(0)+M K_{n}^{(2)}(0) . \tag{3.7}
\end{align*}
$$

Then $S_{n}(0)$ is independent of M and $S_{n}^{\prime}(0)$ is independent of N. This can also directly be concluded from the determinant (3.2). We observe that $S_{n \prime}^{\prime}(0)$ always has the same sign as $K_{n}^{\prime}(0)$, i.ee, $(-1)^{n}{ }^{\prime}$. On the other hand, $S_{n}(0)$ and $K_{n}(0)$ have different signs if $B_{1}=1-\alpha_{n} N$ is negative. We will use this fact in the discussion on the zeros of S_{n}.

4. Monotonicity of α_{n} and β_{n}

In this section we prove that the sequences $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ defined in (3.5) are monotonic.

We start with the well-known relation of Christoffel Darboux for the polynomials $\left\{K_{n}^{(2)}\right\}$,

$$
\begin{equation*}
(x-u) \sum_{i=0}^{n} \frac{K_{i}^{(2)}(x) K_{i}^{(2)}(u)}{b_{i} b_{i+1}}=\frac{1}{b_{n+1}^{2}}\left\{K_{n+1}^{(2)}(x) K_{n}^{(2)}(u)-K_{n}^{(2)}(x) K_{n+1}^{(2)}(u)_{i}^{\}}\right. \tag{4.1}
\end{equation*}
$$

where b_{n} denotes the leading coefficient of $K_{n}^{(2)}(x)$.
Theorem 4.1. The sequence $\left\{\beta_{n}\right\}$ is decreasing.
Proof. Multiply (4.1) by $w(u)$ and integrate over ($0, \infty$). Then (2.5) and (2.6) give

$$
\begin{aligned}
& x \sum_{i=0}^{n} \frac{K_{i}^{(2)}(x)}{b_{i} b_{i+1}} K_{i+1}^{\prime}(0)+\sum_{i=0}^{n} \frac{K_{i}^{(2)}(x)}{b_{i} b_{i+1}} K_{i+1}(0) \\
& \quad=\frac{1}{b_{n+1}^{2}}\left\{K_{n+1}^{(2)}(x) K_{n+1}^{\prime}(0)-K_{n}^{(2)}(x) K_{n+2}^{\prime}(0)\right\}
\end{aligned}
$$

For $x=0$ we obtain

$$
\frac{1}{b_{n+1}^{2}}\left\{K_{n+1}^{(2)}(0) K_{n+1}^{\prime}(0)-K_{n}^{(2)}(0) K_{n+2}^{\prime}(0)\right\}=\sum_{i=0}^{n} \frac{K_{i}^{(2)}(0) K_{i+1}(0)}{h_{i} h_{i+1}}
$$

The right hand term is negative by (2.3). Since $K_{n}^{(2)}(0) K_{n+1}^{(2)}(0)$ is negative too, this implies

$$
\beta_{n+1}=\frac{K_{n+1}^{\prime}(0)}{K_{n}^{\prime 2}(0)}>\frac{K_{n+2}^{\prime}(0)}{K_{n+1}^{(2)}(0)}=\beta_{n+2} .
$$

Thforem 4.2. The sequence $\left\{x_{n}\right\}$ is increasing.
Proof. We now multiply (4.1) by $u w(u)$ and integrate over $(0, x)$. With (2.6) and (2.7) we obtain

$$
\begin{aligned}
-x & \sum_{i=0}^{n} \frac{K_{i}^{(2)}(x)}{b_{i} b_{i+1}} K_{i+1}(0)-1 \\
& =\frac{1}{b_{n+1}^{2}}\left\{-K_{n+1}^{(2)}(x) K_{n+1}(0)+K_{n}^{(2)}(x) K_{n+2}(0)\right\}
\end{aligned}
$$

Differentiating this relation and substituting $x=0$ we obtain

$$
-\sum_{i=0}^{n} \frac{K_{i}^{(2)}(0) K_{i+1}(0)}{b_{i} b_{i+1}}=\frac{1}{b_{n+1}^{2}}\left\{-K_{n+1}^{(2)}(0) K_{n+1}(0)+K_{n}^{(2)}(0) K_{n+2}(0)\right\}
$$

The left hand side is positive. Since $K_{n+1}(0) K_{n+2}(0)$ is negative this implies

$$
\alpha_{n+2}=\frac{K_{n+1}^{(2)}(0)}{K_{n+2}(0)}>\frac{K_{n}^{(2)}(0)}{K_{n+1}(0)}=\alpha_{n+1} .
$$

Corollary 4.1. In view of (3.6), Theorem 4.2 implies: if $S_{n}(0)$ and $K_{n}(0)$ have different signs for $n=n_{0}$, then they have different signs for all n with $n>n_{0}$. Remember $\operatorname{sgn} K_{n}(0)=(-1)^{n}$.

Theorem 4.3. The sequence $\left\{\alpha_{n} \beta_{n}\right\}$ is increasing.
Proof. By (3.5) we have

$$
\alpha_{n} \beta_{n}=\frac{K_{n}^{\prime}(0)}{K_{n}(0)} \frac{K_{n \cdot 1}^{(2)^{\prime}}(0)}{K_{n}^{(2)}{ }_{1}(0)} \quad \text { for } n \geqslant 1
$$

Let $x_{1}<x_{2}<\cdots<x_{n}$ denote the zeros of K_{n}. Then

$$
\begin{equation*}
\left|\frac{K_{n}^{\prime}(0)}{K_{n}(0)}\right|=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}} . \tag{4.2}
\end{equation*}
$$

Let $\eta_{1}<\eta_{2}<\cdots<\eta_{n+1}$ denote the zeros of K_{n+1}. It is well known that the zeros of K_{n} and K_{n+1} mutually separate each other, i.e.,

$$
\eta_{i}<x_{i}<\eta_{i+1} \quad \text { for } \quad i=1,2, \ldots, n .
$$

Hence

$$
\begin{equation*}
\left|\frac{K_{n+1}^{\prime}(0)}{K_{n+1}(0)}\right|=\frac{1}{\eta_{1}}+\cdots+\frac{1}{\eta_{n+1}}>\frac{1}{\eta_{1}}+\cdots+\frac{1}{\eta_{n}}>\frac{1}{x_{1}}+\cdots+\frac{1}{x_{n}}=\left|\frac{K_{n}^{\prime}(0)}{K_{n}(0)}\right| . \tag{4.3}
\end{equation*}
$$

The same result holds for $K_{n}^{(2)}$. This implies that $\left\{\alpha_{n} \beta_{n}\right\}$ is increasing.
Remark 4.1. Suppose that the weight function w is such that $\left|K_{n}^{\prime}(0) / K_{n}(0)\right| \rightarrow \infty$ if $n \rightarrow \infty$. It follows from the proof of Theorem 4.3 that $\alpha_{n} \beta_{n} \rightarrow \infty$. Since, by Theorem 4.1, $\left\{\beta_{n}\right\}$ is decreasing we have $\alpha_{n} \rightarrow \infty$. Then (3.6) implies that $S_{n}(0)$ and $K_{n}(0)$ have different signs if n is sufficiently large.

We mention two situations in which this condition on the weight function w is satisfied.
A. Suppose that the support of w is contained in the finite interval [$0, a$]. Then the zeros of K_{n} are in ($0, a$) and by (4.2)

$$
\left|\frac{K_{n}^{\prime}(0)}{K_{n}(0)}\right|>\frac{n}{a} .
$$

B. Suppose that the weight function w is uniquely determined by the sequence of moments $\left\{c_{n}\right\}$. Suppose moreover that 0 is in the support of w. Then it follows from [4, p. 58-60] that the smallest zero x_{1} of K_{n} tends to 0 if $n \rightarrow \infty$. Then (4.2) implies

$$
\left|\frac{K_{n}^{\prime}(0)}{K_{n}(0)}\right| \rightarrow \infty .
$$

On the other hand, Koekoek [8] has given an example of a weight function for which $\left\{x_{n}\right\}$ is bounded. Hence there exists a weight function which does not satisfy the condition $\left|K_{n}^{\prime}(0) / K_{n}(0)\right| \rightarrow \infty$ if $n \rightarrow \infty$.

5. The Zeros of S_{n} : Introduction

Let the support of w be contained in the interval [0,a), where a may be finite or infinite.

Theorem 5.1. The polynomial S_{n} has n real, simple zeros; at most one of them is outside $(0, a)$. If S_{n} has a zero outside $(0, a)$, then the zero is in $(-x, 0]$.

Proof. Let $v_{1}, r_{2}, \ldots, v_{k}$ denote the zeros of S_{n} in $(0, a)$ of odd multiplicity. Put

$$
\begin{equation*}
\varphi(x)=\left(x-v_{1}\right)\left(x-v_{2}\right) \cdots\left(x-v_{k}\right) . \tag{5.1}
\end{equation*}
$$

Remark that for $k \geqslant 1, \varphi(0)$, and $\varphi^{\prime}(0)$ have opposite sign. Then $\varphi(x) S_{n}(x)$ does not change sign on $[0, a)$. Suppose degree $\varphi \leqslant n-1$. Then $\left\langle\varphi, S_{n}\right\rangle=0$, i.e.,

$$
\begin{equation*}
\int_{0}^{x} w(x) \varphi(x) S_{n}(x) d x+M \varphi(0) S_{n}(0)+N \varphi^{\prime}(0) S_{n}^{\prime}(0)=0 \tag{5.2}
\end{equation*}
$$

If $N=0$ this is obviously impossible. Hence for $N=0$ we have degree $\varphi=n$. If $N>0$ relation (5.1) does not lead to a contradiction. Suppose now that, for $N>0$, degree $\varphi<n-2$. Then also $\left\langle x \varphi, S_{n}\right\rangle=0$, i.e.,

$$
\begin{equation*}
\int_{0}^{x} n(x) x \varphi(x) S_{n}(x) d x+N \varphi(0) S_{n}^{\prime}(0)=0 \tag{5.3}
\end{equation*}
$$

It follows from (5.2) and (5.3) that $\varphi^{\prime}(0) S_{n}^{\prime}(0)$ and $\varphi(0) S_{n}^{\prime}(0)$ should have the same sign. This is a contradiction. Hence, for $N>0$, degree $\varphi=n$ or $n-1$ and the first part of the theorem follows.

Suppose now that degree $\varphi=n-1$. Then there is one zero v_{n} of S_{n} outside $(0, a)$. Relation (5.2) still holds. If $S_{n}(0)=0$ then $v_{n}=0$ is the last zero of S_{n}. If $S_{n}(0) \neq 0$ then (5.2) implies that $\varphi(0) S_{n}(0)$ and $\varphi^{\prime}(0) S_{n}^{\prime}(0)$ should have opposite sign. Since $\varphi(0)$ and $\varphi^{\prime}(0)$ have opposite sign, we conclude that $S_{n}(0)$ and $S_{n}^{\prime}(0)$ have the same sign. But then the last zero v_{n} cannot lie in $[a, \infty)$. Hence $r_{n} \in(-\infty, 0)$.

Corollary 5.1. Concerning the position of the zeros of S_{n} there are two different possible situations.

1. All n zeros $\xi_{1}<\xi_{2}<\cdots<\xi_{n}$ lie in $(0, a) \subset(0, \infty)$. Since the leading coefficient \tilde{a}_{n} of S_{n} is positive, then $\operatorname{sgn} S_{n}(0)=(-1)^{n}$, $\operatorname{sgn} S_{n}^{\prime}(0)=(-1)^{n-1}$.
2. There are $n-1$ zeros $\xi_{2}<\xi_{3}<\cdots<\xi_{n}$ of S_{n} in $(0, a) \subset(0, \infty)$ and there is one zero $\xi_{1} \in(-\infty, 0]$. In this case we write $\xi_{1}=-\rho, \rho \geqslant 0$. Then

$$
\begin{equation*}
S_{n}(x)=\tilde{a}_{n}(x+\rho)\left(x-\xi_{2}\right) \cdots\left(x-\xi_{n}\right) . \tag{5.4}
\end{equation*}
$$

If $\rho \neq 0$, then $\operatorname{sgn} S_{n}(0)=(-1)^{n}$. It is stated in the proof of Theorem 5.1
that in this case $S_{1}(0)$ and $S_{n}^{\prime}(0)$ should have the same sign. Hence $\operatorname{sgn} S_{n}^{\prime}(0)=(-1)^{\prime \prime}$.

It follows from Remark 3.2, recall (2.3): $\operatorname{sgn} K_{n}(0)=(-1)^{\prime \prime}$, that the first situation occurs when $0 \leqslant \alpha_{n} N<1$ and the second one when $\alpha_{n} N \geqslant 1$.

Theorem 5.2. If S_{n} has a zero in $(-\infty, 0]$ for $n=n_{0}$, then S_{n} has a zero in $(-\infty, 0)$ for all n with $n>n_{0}$.

Proof. This statement is a direct consequence of Corollaries 4.1 and 5.1.
Finally we derive some simple estimates for the negative zero $-\rho$ of S_{n}.
Theorem 5.3. Suppose that S_{n} has a zero $-\rho \in(-\infty, 0)$. Then
(a) $\rho<\xi_{2}$, where ξ_{2} denotes the smallest positive zero of S_{n},
(b) if the support of w is contained in the finite interval $[0, a)$, then $\rho<a /(n-1)$,
(c) if $M \neq 0$, then $\rho<\frac{1}{2} \sqrt{N / M}$.

Proof. Corollary 5.1.2 implies

$$
0<\frac{S_{n}^{\prime}(0)}{S_{n}(0)}=\frac{1}{\rho}-\frac{1}{\xi_{2}}-\frac{1}{\xi_{3}} \cdots-\frac{1}{\xi_{n}} .
$$

Hence

$$
\begin{equation*}
\frac{1}{\rho}>\frac{1}{\xi_{2}}+\frac{1}{\xi_{3}}+\cdots+\frac{1}{\xi_{n}} \tag{5.5}
\end{equation*}
$$

Then $1 / \rho>1 / \xi_{2}$, i.e., $\rho<\xi_{2}$.
If a is finite, then $\xi_{2}<\xi_{3}<\cdots<\xi_{n}<a$. Then (5.5) gives

$$
\frac{1}{\rho}>\frac{n-1}{a}
$$

Hence $\rho<a /(n-1)$. In order to prove (c) we remark that by (5.1) and (5.4), S_{n} can be written as

$$
S_{n}(x)=\tilde{a}_{n}(x+\rho) \varphi(x)
$$

Then $\varphi(x) S_{n}(x)$ is non-negative on $[0, \infty)$ and (5.2) implies

$$
M \varphi(0) S_{n}(0)+N \varphi^{\prime}(0) S_{n}^{\prime}(0)<0
$$

or

$$
M \rho \varphi(0)^{2}+N \varphi^{\prime}(0)\left\{\varphi^{\prime}(0)+\rho \varphi(0)\right\}<0 .
$$

We obtain

$$
\rho\left\{M \varphi(0)^{2}+N \varphi^{\prime}(0)^{2}\right\}<-N \varphi^{\prime}(0) \varphi(0)=N\left|\varphi^{\prime}(0) \varphi(0)\right| .
$$

On the other hand,

$$
M \varphi(0)^{2}+N \varphi^{\prime}(0)^{2} \geqslant 2 \sqrt{M N}\left|\varphi(0) \varphi^{\prime}(0)\right| .
$$

Hence $\rho<\frac{1}{2} \sqrt{N / M}$.

6. Location of the Zeros of S_{n}

The following observation is due to Christoffel (see [11, p. 30]). Put

$$
x^{2} Q_{n} \quad 1(x)=\left|\begin{array}{llll}
K_{n} & 1(x) & K_{n}(x) & K_{n+1}(x) \tag{6.1}\\
K_{n} & 1(0) & K_{n}(0) & K_{n+1}(0) \\
K_{n-1}^{\prime}(0) & K_{n}^{\prime}(0) & K_{n+1}^{\prime}(0)
\end{array}\right| \quad \text { for } n \geqslant 1
$$

Then obviously Q_{n}, is a polynomial of degree $n-1$ with leading coefficient, $\quad a_{n+1}\left\{K_{n, 1}(0) K_{n}^{\prime}(0)-K_{n}(0) K_{n}^{\prime} \quad(0)\right\} \neq 0 \quad$ (compare (4.3)). Moreover

$$
\int_{0}^{\infty} w(x) x^{i} x^{2} Q_{n},(x) d x=0 \quad \text { for } \quad i=0,1, \ldots, n-2
$$

Hence

$$
\begin{equation*}
Q_{n} \quad(x)=\mathrm{const} K_{n}^{(2)},(x) \tag{6.2}
\end{equation*}
$$

Lemma 6.1. Between two consecutive zeros of K_{n} there is exactly one zero of $K_{n}^{(2)}{ }_{1}$.

Proof. Using (6.1), (6.2), and the recurrence relation we may write

$$
x^{2} K_{n}^{(2)}(x)=\left(d_{1} x+d_{2}\right) K_{n}(x)+d_{3} K_{n \cdot 1}(x)
$$

for some constants d_{1}, d_{2}, d_{3}. Since $K_{n}(0) \neq 0$ we have $d_{3} \neq 0$. Let x_{i} and x_{i+1} denote two consecutive zeros of K_{n}. It is well known that K_{n}, has exactly one zero in $\left(x_{i}, x_{i+1}\right)$. Hence $K_{n},\left(x_{i}\right)$ and $K_{n},\left(x_{i+1}\right)$ have opposite sign. Then also $K_{n-1}^{(2)}\left(x_{i}\right)$ and $K_{n}^{(2)}\left(x_{i+1}\right)$ have opposite sign. This implies that $K_{n}^{(2)}$, has at least one zero in $\left(x_{i}, x_{i+1}\right)$. Since this holds for $i=1,2, \ldots, n-1$ we conclude that $K_{n}^{(2)}$, has exactly one zero in $\left(x_{i}, x_{i+1}\right)$.

Corollary 6.1. Since the zeros of $K_{\text {, }}$ and $K_{n}^{(2)}$, mutually separate each other we can also state that hetween two consecutive zeros of $K_{n}^{(2)}$, there is exactly one zero of K_{n}. Reading Lemma 6.1 with the weight function w replaced hy $x^{2} w(x)$ we ohtain that henween two consecutwe zeros of $K_{n}^{(2)}$ there is exactly one zero of $K_{n}^{(4)}{ }_{2}$.

Lemma 6.2. Let $y_{1}<y_{2}<\cdots<y_{n}$, denote the zeros of $K_{n}^{(2)}{ }_{1}$. Then $K_{n}\left(y_{i}\right)$ and $K_{n}^{(4)}{ }_{2}\left(y_{i}\right)$ have opposite sign. The sign of $K_{n}^{(4)}{ }_{2}\left(y_{i}\right)$ is $(-1)^{n} \quad$ i .

Proof. Let x_{n} denote the largest zero of K_{n} and $z_{n} z_{2}$ the largest zero of $K_{n}^{(4)}{ }_{2}$. Lemma 6.1 implies $z_{n} \quad<y_{n} \quad 1<x_{n}$. Since all leading coefficients are positive we have

$$
K_{n}\left(y_{n} \quad 1\right)<0<K_{n}^{(4)}\left(\begin{array}{ll}
y_{n} & 1
\end{array}\right)
$$

and the lemma is proved for $i=n-1$.
Running from y_{n}, to $y_{n} \quad 2$ we pass exactly one zero of K_{n} and exactly one zero of $K_{n}^{(4)}{ }_{2}$. Then in $y_{n}{ }_{2}$ we conclude that $K_{n}\left(y_{n} 2_{2}\right)$ and $K_{n}^{\prime 4)}{ }_{2}\left(y_{n} 2_{2}\right)$ have again different sign. Moreover the sign of the latter is -1 . Hence the lemma is proved for $i=n-2$. Proceeding in this way we prove the lemma for $i=n-1, n-2, n-3, \ldots, 1$.

The lemma enables us to give a complete description of the position of the zeros of S_{n} if S_{n} has a negative zero.

Theorem 6.1. Let $y_{1}<y_{2}<\cdots<y_{n}$, denote the zeros of $K_{n}^{(2)}$. Suppose that S_{n} has a zero in $(-x, 0]$. Then S_{n} has a zero in $\left(0, y_{1}\right)$ and a zero in every interval $\left(y_{i}, y_{i+1}\right), i=1,2, \ldots, n-2$. The non-positive zero lies in $\left(-y_{1}, 0\right]$.

Proof. By Theorem 3.1 we have

$$
S_{n}\left(y_{i}\right)=\left(1-x_{n} N\right) K_{n}\left(y_{i}\right)+B_{3} y_{i}^{2} K_{n}^{(4)}{ }_{2}\left(y_{i}\right)
$$

where $B_{3}>0$ and $1-x_{n} N \leqslant 0$ (compare Corollary 5.1). Then Lemma 6.2 implies $\operatorname{sgn} S_{n}\left(y_{i}\right)=(-1)^{n} \quad 1 \quad$. Hence every interval $\left(y_{i}, y_{i+1}\right)$, $i=1,2, \ldots, n-2$ contains at least one zero of S_{n}.

Moreover Lemma 6.2 implies sgn $S_{n}\left(y_{1}\right)=(-1)^{n}$. Suppose $S_{n}(0) \neq 0$. Then Corollary 5.1 .2 says $\operatorname{sgn} S_{n}(0)=(-1)^{\prime \prime}{ }^{1}$ and there is at least one zero of S_{n} in $\left(0, y_{1}\right)$. If $S_{n}(0)=0$ then, again by Corollary 5.1.2, we have $\operatorname{sgn} S_{n}^{\prime}(0)=(-1)^{n} \quad$ and again there has to be at least one zero of S_{n} in $\left(0, y_{1}\right)$. Since S_{n} has by assumption $n-1$ zeros in $(0, \infty)$ every interval $\left(0, y_{1}\right),\left(y_{i}, y_{i+1}\right), i=1,2, \ldots, n-2$ has exactly one zero of S_{n}.

Finally let $-\rho$ denote the non-positive zero of S_{n} and ζ_{2} the smallest positive zero of S_{n}. Then by Theorem 5.3(a), $\rho<\zeta_{2}<y_{1}$.

It is possible to represent S_{n} as a linear combination of $K_{n}(x), x K_{n}^{(2)}{ }_{1}(x)$, and $K_{n}^{(2)}{ }_{1}(x)$. However, the coefficients are more complicated than those in Theorem 3.1.

Theorem 6.2. For $n \geqslant 0$ the polynomials $S_{n}^{M, N}$ can be written as

$$
\begin{equation*}
S_{n}^{M, N}(x)=D_{1} K_{n}(x)+D_{2} \cdot x K_{n}^{(2)},(x)+D_{3} K_{n}^{(2)},(x) \tag{6.3}
\end{equation*}
$$

where

$$
\begin{aligned}
D_{1} & =1-\frac{N}{K_{n}(0)^{2}}\left\{K_{n}^{\prime}(0) K_{n}^{(2)}{ }_{1}(0)+K_{n}(0) K_{n}^{(2)}{ }_{1}(0)\right\}-M N \frac{K_{n}^{(2)}(0)^{2}}{K_{n}(0)^{2}}, \\
D_{2} & =M+N \frac{K_{n}^{\prime}(0)^{2}}{K_{n}(0)^{2}}+\frac{M N}{K_{n}(0)^{2}}\left\{K_{n}^{\prime}(0) K_{n}^{(2)}(0)-K_{n}(0) K_{n}^{(2)}{ }_{1}(0)\right\}_{1}, \\
D_{3} & =N \frac{K_{n}^{\prime}(0)}{K_{n}(0)}+M N \frac{K_{n}^{(2)}(0)}{K_{n}(0)} .
\end{aligned}
$$

Proof. We proceed as in the proof of Theorem 3.1. Obviously the righthand member of (6.3) is orthogonal with respect to the inner product (3.1) on x^{\prime} for $2 \leqslant i \leqslant n-1$ for every choice of D_{1}, D_{2}, and D_{3}. So we have to choose the coefficients in such a way that also $\left\langle 1, S_{n}\right\rangle=0$ and $\left\langle x, S_{n}\right\rangle=0$. This gives the equations

$$
\begin{array}{r}
D_{1} M K_{n}(0)-D_{2} K_{n}(0)+D_{3}\left(K_{n}^{\prime}(0)+M K_{n}^{(2)}{ }_{1}(0)\right)=0, \\
D_{1} N K_{n}^{\prime}(0)-D_{2} N K_{n}^{(2)}{ }_{1}(0)+D_{3}\left(-K_{n}(0)+N K_{n}^{(2)}{ }_{1}(0)\right)=0 .
\end{array}
$$

From this system the coefficients can be derived.
Observe that the coefficients of N and $M N$ in D_{1} are positive, so D_{1} may be zero for suitable choices of N and M. If $D_{1}=0$, then $S_{n}(x)=$ $\left(D_{2} x+D_{3}\right) K_{n, 1}^{(2)}(x)$ and all zeros of $K_{n}^{(2)}(x)$ are zeros of S_{n}.

Finally we describe the behaviour of the zeros of $S_{n}=S_{n}^{N}$ for fixed n and M and variable N. Let, as before, $y_{1}<y_{2}<\cdots<y_{n}$, denote the zeros of $K_{n}^{(2)}$, and $\xi_{1}<\xi_{2}<\cdots<\xi_{n}$ those of S_{n}^{N}. If $N=0$, then $S_{n}^{N}=K_{n}$ and by Lemma 6.1 the location of the zeros of S_{n} is as follows:
$\xi_{1}<y_{1}, \quad \xi_{n}>y_{n}, \quad \xi_{i+1} \in\left(y_{i}, y_{i+1}\right) \quad$ for $\quad i=1,2, \ldots, n-2$.
On the other hand, if $N=N_{1}>\alpha_{n}{ }^{1}$ then by Theorem 6.1 the location of the zeros is

$$
\begin{equation*}
\xi_{1}<\xi_{2}<y_{1}, \quad \xi_{i+1} \in\left(y_{i}, y_{i}\right) \quad \text { for } \quad i=2, \ldots, n-1 . \tag{b}
\end{equation*}
$$

The zeros ξ_{i+1} are continuous functions of N. If N runs from $N=0$ to
$N=N_{1}$ the situation (a) is continuously transformed in the situation (b). Hence ξ_{i+1} had to pass through $y_{i}(i=1,2, \ldots, n-1)$. By Theorem 6.2,

$$
S_{n}^{N}\left(y_{i}\right)=D_{1} K_{n}\left(y_{i}\right), \quad i=1,2, \ldots, n-1,
$$

where $D_{1}=D_{1}(N)$ is a linear function of N. (Recall that M and n are fixed.) Hence there is exactly one value $N_{0} \in\left(0, N_{1}\right)$ such that $D_{1}\left(N_{0}\right)=0$. For this value N_{0} it follows $\xi_{i+1}=y_{i}$ for $i=1,2, \ldots, n-1$.

Now we may conclude that if $N \in\left[0, N_{0}\right)$, then the zeros of S_{n}^{N} are located according to position (a), if $N>N_{0}$, then the zeros of S_{n}^{N} are in position (b).

Corollary 6.2. Either all zeros of $K_{n}^{(2)}$, are zeros of S_{n}, or hetween two consecutive zeros of $K_{n}^{(2)}$, there is exactly one zero of S_{n}.

Remark 6.1. In general it is not true, that between two consecutive zeros of K_{n}, there is a zero of S_{n}. Let $x_{1}<x_{2}<\cdots<x_{n}$ denote the zeros of K_{n}. By Theorem 6.2,

$$
\begin{equation*}
S_{n}\left(x_{i}\right)=\left(D_{2} x_{i}+D_{3}\right) K_{n}^{(2)}{ }_{1}\left(x_{i}\right), \quad i=1,2, \ldots, n \tag{6.4}
\end{equation*}
$$

Take $N=M \rightarrow \infty$, then $-D_{3} / D_{2}$ converges to

$$
\tau=\frac{K_{n}^{(2)}{ }_{1}(0) K_{n}(0)}{K_{n}(0) K_{n}^{(2)}{ }_{1}(0)-K_{n}^{\prime}(0) K_{n}^{(2)}{ }_{1}(0)} .
$$

Now

$$
\frac{1}{\tau}=\frac{K_{n}^{(2)}(0)}{K_{n}^{(2)}(0)}-\frac{K_{n}^{\prime}(0)}{K_{n}(0)}=\sum_{i=1}^{n} \frac{1}{x_{i}}-\sum_{i=1}^{n} \frac{1}{y_{i}} .
$$

By Lemma 6.1, $x_{i}<y_{i}<x_{i+1}, i=1,2, \ldots, n-1$. Hence

$$
\frac{1}{x_{n}}<\frac{1}{\tau}<\frac{1}{x_{1}}
$$

i.e., $x_{1}<\tau<x_{n}$.

This implies that we can choose N and M in such a way that the zero T of $D_{1} x+D_{3}$ is between two consecutive zeros, say x_{j} and x_{j+1} of K_{n}. Let moreover N be chosen so large that S_{n} has a negative zero. If $i \in\{1,2, \ldots, n-1\}, i \neq j$, then by (6.4) and Lemma 6.1, $S_{n}\left(x_{i}\right)$ and $S_{n}\left(x_{i+1}\right)$ have opposite sign. Hence S_{n} has at least $n-2$ zeros in $\left(x_{1}, x_{n}\right) \backslash\left(x_{i}, x_{i+1}\right)$.

Since S_{n} also has a negative zero, S_{n} has at least $n-1$ zeros outside $\left(x, x_{j+1}\right)$. However, by (6.4), $S_{n}\left(x_{j}\right)$ and $S_{n}\left(x_{j+1}\right)$ have the same sign, so the last zero of S_{n} cannot lie in $\left(x_{j}, x_{i+1}\right)$.

Remark 6.2. Several other representations of S_{n} in standard polynomials can be derived. Obviously we can write

$$
S_{n}(x)=\sum_{i=0}^{n} A_{i} K_{i}^{(2)}(x) .
$$

Then, for $i \in\{0,1, \ldots, n\}$,

$$
A_{i} \int_{0}^{x} w(x) x^{2} K_{i}^{(2)}(x)^{2} d x=\int_{0}^{x} w(x) x^{2} S_{n}(x) K_{i}^{(2)}(x) d x=\left\langle S_{n}, x^{2} K_{i}^{(2)}(x)\right\rangle
$$

The last member is zero for $i \leqslant n-3$. Hence

$$
S_{n}(x)=A_{n} K_{n}^{(2)}(x)+A_{n} \quad{ }_{1} K_{n}^{(2)}{ }_{1}(x)+A_{n} \quad{ }_{2} K_{n}^{(2)}{ }_{2}(x),
$$

where the coefficients $A_{n}, A_{n \cdot 1}, A_{n}{ }_{2}$ depend on n, N, and M. This means that S_{n} is quasi-orthogonal with respect to $\left\{K_{n}^{(2)}(x)\right\}$ of order 2 . Marcellan and Ronveaux [10] have proved that $x^{2} S_{n}(x)$ is quasi-orthogonal with respect to $\left\{K_{n}\right\}$ of order 4 .

Acknowledgment

I thank the referees for their useful remarks.

References

1. P. Althammer, Eine Erweiterung des Orthogonalitätsbegriffes bei Polynomen und deren Anwendung auf die beste Approximation, J. Reine Angew. Math. 211 (1962), 192-204.
2. H. Bavinck and H. G. Mener. On orthogonal polynomials with respect to an inner product involving derivatives: Zeros and recurrence relations. Indag. Math. N.S. 1 (1990). 7-14.
3. J. Brewner, Uber eine Erweiterung des Orthogonalitätsbegriffes bei Polynomen. in "Constructive Theory of Functions," Akadémiai Kiadó. Budapest, 1972.
4. T. S. Chihara. "An Introduction to Orthogonal Polynomials," Gordon and Breach, New York, 1978.
5. E. A. Cohen, Zero distribution and behavior of orthogonal polynomials in the Sobolev space $W^{1,2}[-1,1]$, SIAM J. Math. Anal. 6 (1975), 105-116.
6. A. Iserles. P. E. Koch. S. P. Nørsett, and J. M. Sanz-Siria, On polynomials orthogonal with respect to certain Sobolev inner products, J. Approx. Theory 65 (1991). 151-175.
7. R. Koekoek, Generalizations of Laguerre polynomials, J. Math. Anal. Appl. 153 (1990), 576-590.
8. R. Koekoek. A generalization of Moak's q-Laguerre polynomials, Canad. J. Math. 42 (1990), 280-303.
9. R. Koekoek and H. G. Meifer. A generalization of Laguerte polynomials. SIAM J. Math. Anal., to appear.
10. F. Marcellan and A. Ronvealx, On a class of polynomials orthogonal with respect to a discrete Sobolev inner product, Indag. Math. N.S. 1 (1990), 451-464.
11. G Szegio, Orthogonal polynomials, in "American Mathematical Society Colloquium Publications," Vol. 23 (1939), 4th ed.. Providence, RI, 1975.
