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We are concerned with the set of polynomials: S,:""} which are orthogonal with
respect to the discrete Sobolev inner product

U R) = S' w(x) f(x) xIx) dx + M{(Oj R(Oj + N{'(O) f?'(0),
()

where II' is a weight function. !vi;:' O. .IV;:, 0, We show that these polynomials can
be described as a linear combination of standard polynomials which are orthogonal
with respect to the weight functions ",(x), x'II'(x), and x 4 ",(x). The location of the
zeros of s~t,' is given in relation to the position of the zeros of the standard
polynomials. (14'13 AcademK Press. rm:

I. INTRODUCTION

Several authors generalize the concept of standard orthogonal polyno­
mials to orthogonal polynomials in a Sobolev inner product space. We
mention here Althammer [I J, Brenner [3J, Cohen [5J, and more recently
Bavinck, Meijer [2J, Koekoek [7], Marcellan, Ronveaux [IOJ, and
Iserles, Koch, N0rsett, Sanz-Serna [6].

In the present paper we investigate the polynomials {5;;1, N} which are
orthogonal with respect to the inner product

<.1; g)=r w(xlf(x) g(x)dx+M{(O) g(O)+Nj"(O) g'(O),
()

where Il' is a weight function, M:;:, 0, N:;:, O.
We show that these polynomials can be expressed as

5;;I.N(X) = B I K,,(x) + B2XK,~21 I(X) + B1 x 2K;,4 12(X), (1.1)

I
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2 H. G. MEIJER

where f K 1. f K 121 } and J K(4) 1. are the sets of standard orthogonal polyno-l II J' l II l n j

mials (M = N = 0) with respect to the weight functions w(x), respectively,
x 2w(x) and x 4w(x).

Furthermore we describe the position of the zeros of S;:I.N(X) in relation
to the zeros of K,,(x) and K,~2) I(X).

In Section 2 we recall some well-known results on the standard polyno­
mials and derive some simple relations between K,,, K,~2J, and K,~4). In
Section 3 we define the polynomials S;~Uv and prove relation (1.1). In
Section 4 the coefficients B J' B 2 , and B 1 in (1.1 ) are studied in more detail.

Section 5 contains some simple results on the zeros of S;;f.!v. Finally in
Section 6 the location of the zeros of S;;I.N in relation to the zeros of K"
and K,~2) 1 is derived.

Some results in this paper are direct generalizations of results in [9J,
where the weight function is the Laguerre weight w(x) = x'e \ (:1 > -1 );
the results in Section 6, however, are completely new.

2. THE STANDARD POLYNOMIALS

Let II' denote a weight function on (0, x;), i.e., w(x) ~ 0, all moments

C,,= fX w(x)x"dx,
o

n=O, 1,2, ...

exist and Co =I- 0.
The support of 11', i.e., the closure of the set [x jw(x) > O} may be a real

subset of [0, ex; ); the point x = °may be outside or on the boundary of the
support of 11'.

Consider the inner product

(f g) = r II'(X) fIx) g(x) dx.
o

Define the set of standard polynomials {K,,} by

(2.1 )

Co C, ('2 ('n

C1 C2 C C,,+ I3

C2 C C4 ('/I + 2
K,,(x)=

3 for n ~ 1. (2.2)

c" 1 en C,,+ I C 2n 1

X X
2 X"
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Then we have, for 0,,;; i";; n - L that (x', K,,) = 0, showing that {K,,] IS

an orthogonal set with respect to the inner product (2.1).
Let a" denote the leading coefficient of K,,(x), then we havc

(x", K,,) = a" + , for 11 ~ O.

Then (a"x", K,,) = a"a" + I' On the other hand, a"x" = K,,(x) + p" I(X), for
some polynomial p" I of degree,,;;n-1. Then (an-~",K")=(K,,,K,,»O.

This implies a"a" + , > 0 for n ~ O. Since a o = 1 all leading cocfficients a" are
positive.

In the same way we can describe the sets of polynomials (K,I,21} and
lK;,4 1

} which are orthogonal with respect to the weight functions Ir(x)x2
and w(x)x 4 respectively. They are defined for n ~ 1 by the dcterminant
(2.2) with C, replaced by C,+2' respectively ('1+4' For n=O we define
K1\21(X) = KI\4

1(X) == 1.
We will often use the following result: all zeros of K", K,I,21 and K;,4 J are

real, simple and lie in (0, x ).
Especially this implies, since the leading coefficients are positive.

sgn K,,(O) = sgn K;,2J(O) = sgn K;,4 1(0) = (-I)"

sgn K;,(O) = sgn K,;2 J (0) = sgn K,;4)'(0) = (-I)" 1

LEMMA 2.1. The followinK relations hold:

rx

w(X)K,;21(X)dx=K;,+,(0)
·0

r f. w(x)x K,;2 1(X) dx = -K" + ,(0)
'0

Jx w(x)x 2 K,;4)(X) dx = K,;21 ,(0)
o

ff. lI'(x)x 3 K~,4)(X) dx = -K,;21 1(0)
o

for n ~ 0,

for 11 ~ l.

for 11 ~ O.

Ic)r 11 ~ 1

for n=O.

for 11 ~ O.

for 11 ~ O.

(2.3 )

(2.4)

(2.5)

(2.6)

(2.7 )

(2.8)

(2.9)

Proof For n ~ 1 relations (2.5) and (2.6) follow from the determinantal
representation (2.2). Relation (2.7) for 11 ~ 1 is a direct consequence of the
orthogonality. For n = 0 we observe K,I,2 )(x) == 1 and K 1(x) = cox - C 1 and
(2.5), (2.6), and (2.7) follow for n = O.
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Relation (2.8) and (2.9) are a direct consequence of (2.5), respectively
(2.6 ).

3. THE POLYNOMIALS SII

Consider the inner product

<.r. g)=r w(x)f(x) g(x)dx+Ml(O) g(O)+Nj"'(O) g'(O), (3.1)
o

where M;3 0, N;3 O. Then

if i=j= 0,

if i=j=l,

otherwise.

Deline the set of polynomials {S;~f.N] by

'f " If .' 1('0 + M ('II,S:'; "(x) == I, Sj "(x) = I
x

('o+M ('I ('2 en

('I ('2+ N (' ('''+ IJ

('2 (' ('4 ('" + 2S;:I·\'(X) = J for n;3 2. (3.2)

('" I C,t ('11+ I ('211 1,
x"X x-

We often write S,,(x) instead of S,~f,,"(X). For 0 ~ i ~ n - t we have
<xi, S,,) = O. Let a" denote the leading coefficient of S", then for n;3 2

<x",SII)=all +!·

For n = 0 we obtain <1, So) = Co + M = al and for n = 1,

Hence <x",SI)=a"+1 for n;30. Then O«S,,,S,,)=a,,<x",S,,)=
all all + I for n ;3 O. Since ao = t, all leading coefficients are positive. We have
found that {SII} is a set of orthogonal polynomials on (O,x;) with respect
to the inner product (3.1).



LAGUERRE POLYNOMJALS 5

Evaluating the determinant (3.2) it follows that S" can be written as
S,,(x) = K,,(x) + MxK,;2/lx ) + MNx 2K:,4 1

2(X) + Nq,,(x), for some polyno­
mial q" of degree ~n. Here the polynomials K,,(x), xKr~211(X), and
x 2K:,41 2(X) occur. We observe that for 2~i~n-l,

<x', K,,(x) =0,

(Xi, x 2K,I,4 1
2(X) = r w(x) X 4X i 2K,;4) 2(X) dx = O.

()

Then S" can be written as

if the constants B), B2, and B 3 are chosen in such a way that

(1,S,,)=O

(x, S,,) =0

for n ~ 1.

for n ~ 2.

(3.3 )

(3.4 )

[As usual we define K I2 :(.x)=K I4 :(.X)=K(4i(x)=0.] Using (3.1), (2.6),
(2,8), and (2.9) we conclude that B(, B2 , and B 3 had to satisfy the equa­
tions

B I MK,,(O) - B2K,,(0) + B,K,~2~'1(0) = 0

B\NK;,(O) + B2NKr~211(0) - B 3 K,;2) 1(0) =0

We take

for n ~ 1,

for n ~ 2.

K(21' (0)
B,=I- ,,1 N

K,,(O)

Then we find, using Cramer's rule for n ~ 2

K~(O) K;,2I,(0)
B 2 = M + K (0) K I21 (0) N

fl ,,1

K~(O)

B 3 =MN+ KI21 (0) N
n- I .

We have obtained the following result.

for n~O.

for n~ 1,

for n ~ 2.

THEOREM 3.1. For n~O the polynomial S;~t.N can he written as

S:,'·N(X) = B( K,,(x) + B2xK;/II(X) + B 3 x 2K,',4/ 2(X),
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where
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B2= M + (XII {ill N, BJ = MN + (iIlN,

for n ~ 0, I
i _ K;,(O)
11- K I21 (0)II ,

(3.5 )

Remark 3.1. It follows from (2.3) and (2.4) that (XII ~ 0, (ill> 0, thus
B 2 ~ 0, B, ~ 0. On the other hand, B I may be negative.

Remark 3.2. The theorem implies

SII(O)=KII(O)(I-(XII N ),

S;,(O) = K;,(O) + MK/~21,(0).

(3.6)

(3.7 )

Then SII(O) is independent of M and S;,(O) is independent of N. This can
also directly be concluded from the determinant (3.2). We observe that
S;,(O) always has the same sign as K;,(O), i..e, (-1)" '. On the other hand,
5 11(0) and K,,(O) have different signs if B\ = 1 -(XIIN is negative. We will use
this fact in the discussion on the zeros of 511 ,

4. MONOTONICITY OF '(XII AND PII

In this section we prove that the sequences {(XII} and {PII} defined in
(3.5) are monotonic.

We start with the well-known relation of Christoffel- Darboux for the
polynomials [K/~2)},

(4.1 )

where hll denotes the leading coefficient of K/~2)(X).

THEOREM 4.1. The sequence {{J II} is decreasing.

Proof Multiply (4.1) by w(u) and integrate over (0, w). Then (2.5) and
(2.6) give
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For .1.'=0 we obtain

I /I K(2/(O) K (0)
-- (Kill (0) K' (0) - K 111(0) K' (0)· 1. = '\', i+ I
h1 I /1+' /1+' /I /1+1 j L. h.h. .

II +- 1 i = () I 1+ 1

7

The right hand term is negative by (2.3). Since K ,',ll(O) K ,I,l;' 1(0) is negative
too, this implies

THEOREM 4.2. The sequence (:X/l} is increasin~.

Proof We now multiply (4.1 ) by uw( u) and integrate over (0,:1_). With
(2.61 and (2.7) we obtain

" K!" I(X)
-x I. -- K,+ dO)-1

i~O h,h, f I

Differentiating this relation and substituting .1.'=0 we obtain

;,.. K,t"I(O)K'+I(O)_ I I KI1I(O K (0 1110 K 0 I
- L. hh - Tl - II +, ) IH' ) + K II ( ) II + 1( ) J.

i = () / 1 + I f1 + 1

The left hand side IS positive. Since K/I+ dO) K II +1(0) IS negative this
implies

COROLLARY 4.1. In vi('ll' o( (3.6), Theorem 4.2 implies: (( 5 11(0) and
KII(O) have ditlerent si~ns .le)r n = no, then the.\' have ditlerC'lI! si~lIs .le)r alln
with II> 11 0 , Renwmher sgn K,,( 0) = (_ 1)".

THEOREM 4.3. The sequence [:XII PII} is increa.l'inK·

Proof By (3.5) we have

for n ~ I.

Let XI < Xl < ... < x" denote the zeros of K/I' Then

I
K:,(O)I 1 I 1-- =-+-+ ... +-.
K)O) Xl Xl XII

(4.2)
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Let '11 < '12 < ... < '1" + I denote the zeros of K" t I' It is well known that
the zeros of K" and K" + I mutuaIly separate each other, i.e.,

Hence

'L<X i <'1i+ I for i = I, 2, ,.. , /1.

I
K;'+I(O)I 1 1 1 1 1 1 IK:,(Oll=-+ ... +-->-+ ... +->-+ ... +-= -- .
K,,+ 1(0) '11 '1,,+ 1 '11 '1" Xl X" K,,(O)

(4.3)

The same result holds for K,I,21. This implies that {O(,,!J,,} is increasing.

Remark 4.1. Suppose that the weight function It' is such that
IK;'(O)/K,,(O)I -+ CfJ if /1-+ CfJ. It follows from the proof of Theorem 4.3 that
Q("!J,, -+ x'. Since, by Theorem 4.1, {fill} is decreasing we have O(,,-+YJ,
Then (3.6) implies that 5,,(0) and K,,(O) have different signs if 11 is
sufficiently large.

We mention two situations in which this condition on the weight
function w is satisfied.

A. Suppose that the support of \I' is contained in the finite interval
[0, a]. Then the zeros of K" are in (0, a) and by (4.2)

IK;'(O).I >~.
K,,(O\ a

B. Suppose that the weight function w is uniquely determined by the
sequence of moments {(',,}. Suppose moreover that 0 is in the support of
w. Then it follows from [4, p. 58-60] that the smallest zero Xl of K" tends
to 0 if 11 -+ x. Then (4.2) implies

I
K;'(O) 1-+ eX!,

K,,(O)

On the other hand, Koekoek [8] has given an example of a weight
function for which {O(,,} is bounded. Hence there exists a weight function
which does not satisfy the condition IK;'(O)/K,,(O)I -+x if 11 -+XJ,

5. THE ZEROS OF 5,,: INTRODUCTION

Let the support of w be contained in the interval [0, a), where a may be
finite or infinite.
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THEOREM 5.1. The polynomial S" has n real, simple zeros; at most one of
them is outside (0, a). If S" has a zero outside (0, a), then the zero is in
(-x,O].

Prool Let v" 1'2' ... , I'k denote the zeros of SrI in (0, a) of odd multi­
plicity. Put

(5.1 )

Remark that for k ~ I, cp(O), and cp'(O) have opposite sign. Then cp(x) S,,(x)
does not change sign on [0, a). Suppose degree cp ~ n - I. Then
(cp, SrI >= 0, i.e.,

r lI'(x) cp(x) S,,(x)dx+ Mcp(O) S,,(O) + Ncp'(O) S;,(O)=O. (5.2)
()

If N = 0 this is obviously impossible. Hence for N = 0 we have degree cp = n.
If N> 0 relation (5.1 ) does not lead to a contradiction. Suppose now that,
for N> 0, degree cp < n - 2. Then also <xcp, SrI >= 0, i.e.,

f' lI'(x) xcp(x) S,,(x) dx + Ncp(O) S;,(O) = o.
'0

(5.3 )

It follows from (5.2) and (5.3) that cp'(O) S;,(O) and cp(O) S;,(O) should
have the same sign. This is a contradiction. Hence, for N> 0, degree cp = n
or n - 1 and the first part of the theorem follows.

Suppose now that degree cp = n - I. Then there is one zero v" of S" out­
side (0, a). Relation (5.2) still holds. If S,,(O) = 0 then v" = 0 is the last zero
of S". If S,,(O)#O then (5.2) implies that cp(O) S,,(O) and cp'(O) S;,(O) should
have opposite sign. Since cp(O) and cp'(O) have opposite sign, we conclude
that S,,(O) and S;,(O) have the same sign. But then the last zero v" cannot
lie in [a, x ). Hence v" E ( -x, 0).

COROLLARY 5.1. Concerning the position of the zeros of SrI there are tll'O
different possihle situations.

I. All n zeros ¢1<¢2< ... «" lie in (O,a)c(O,Y-J). Since the
leading coefficient a" of SrI is positipe, then sgn S,,(O) = (- I)",
sgn S;,(O) = (-I)" '.

2. There are n - I zeros ¢2 < ¢3 < ... < (" of SrI in (0, a) c (0, eX;) and
there is one zero (, E ( -X;, 0]. In this case we write (, = -p, p ~ O. Then

(5.4 )

If p # 0, then sgn S,,(O) = (-1)" I. It is slated in the proof of Theorem 5.1
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that in this case S,,(O) and S;,(O) should have the same sigll. Hellce
sgn S;,(O) = ( - I)" 1

II follows ji-om Remark 3.2, recall (2.3): sgn K,,(O) = (-I )", Ihat Ihe .first
sitw11iOIl occurs when 0 ~ 0(" N < I and the second one lvhenO(" N ~ I.

THEOREM 5.2. Il S" has a zero in (-x, OJ for n = no, then S" has a zero
ill ( - x, 0) If)r all 11 with 11 > 11 0,

Pro4 This statement is a direct consequence of Corollaries 4. I and 5.1.

Finally we derive some simple estimates for the negative zero - p of S1I'

THEOREM 5.3. Suppose Ihal S" has a zero - p E ( -x" 0). Then

(a) P<¢2' where (2 denoles Ihe smallest posilive zero olS",

(b) if the support olll' is conlained in the jinite inlerval [0, a), Ihen
p<a/(n-I),

(el ilMi=0,thenp<1 y iN/M.

ProoF Corollary 5.1.2 implies

S;,(O) 1 I I 1
0<--=-----··· --.

S,,(O) P (2 ¢1 ~"

Hence
1 I I 1->-+-+ ... +-.
P (2 ¢1 ~"

Then I/p> 1/~2' i.e., P<¢2'
If a is finite, then (2 < (1 < ... < ¢" < a. Then (5.5) gives

1 n-l
->--.
p a

(5.5 )

Hence p < a/(n - I). In order to prove (e) we remark that by (5.1) and
(5.4), S" can be written as

SIl(X) = all(x + p) cp(x).

Then cp(x) S,,(x) is non-negative on [0, x ) and (5.2) implies

Mcp(O) S,,(O) + Ncp'(O) S;,(O) < 0

or

Mpcp(0)2 + Ncp'(O){ cp'(O) + pcp(O)} < O.
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We obtain

On the other hand,

M<p(0)2 + N<p'(0)2 ~ 2 v/MN 1<p(0) <p'(0)1.

Hence p < 1IN/M.

6. LOCATJON OF THE ZEROS OF S"

The following observation is due to Christoffel (see [1\, p. 30]). Put

11

K" I(X) K,,(x) K,,+dx)

x 2Qn I(X) = K" 1(0) K,,(O) K"+I(O) for 11 ~ I. (6.1 )

K;, 1(0) K;,(O) K;,+ 1(0)

Then obviously Q" , is a polynomial of degree n - I with leading
coefficient, a"+dK,, 1(0) K;,(O)-K,,(O) K;, ,(O)};iO (compare (4.3)).
Moreover

Hence

j". W(X)XiX2Q" l(x)dx=O
o

for i = 0, I, '00' n - 2.

(6.2 )

LEMMA 6.1. Between two consecutive zeros of K" there is exactly one
zero of K ~,2 I I'

Proo! Using (6.1), (6.2), and the recurrence relation we may write

x2K~,2) l(x)=(d,x+d2)K"(x)+d3 K,, ,(x)

for some constants d 1,d2,d3 • Since K,,(O);iO we have d3 ;iO. Let Xi and
Xi + I denote two consecutive zeros of K". It is well known that K" I has
exactly one zero in (Xi' x i + I)' Hence K" dx,) and K" dx i + 1) have
opposite sign. Then also K~,2J lx;) and K:,2) I(X i + I) have opposite sign.
This implies that K~,2J , has at least one zero in (Xi' X,+ 1)' Since this holds
for i = 1, 2, 00" n - 1 we conclude that K :,2), has exactly one zero in

(x" X i + I)'
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COROLLARY 6.1. Since the ::ero,l' of KII and K;,21 I mutually separate each
other we can also state that hetween two consecutive ::eros of K ~,21 I there is
exactly one ::ero of KII . Readinx Lemma 6.1 lI'ith the weixht .timction II'

replaced hy x 2w(x) we ohtain that hetween tlt'O consecutive ::eros of K~,21 I

there is exactly one ::ero of K :,4
1

2'

LEMMA 6.2. Let .1'1 < Y2 < ... < .I'll I denote the ::eros of K~,2) ,. Then
KII(y,) and K:,4

1 2(yd have opposite sign. The sign o(K:: 1 2(.1',) is (-1)" I i.

Prool Let XII denote the largest zero of KII and:: 11 2 the largest zero of
K :,4

1
2' Lemma 6.1 implies:: 11 2 <)'11 I < XII' Since all leading coefficients

are positive we have

and the lemma is proved for i = n - I.
Running from .I'll ,to .I'll 2 we pass exactly one zero of K II and exactly

one zero of K~,41 2' Then in .I'll 2 we conclude that K II (.I'll 2) and
K:,4 1

2(YIl 2) have again different sign. Moreover the sign of the latter is
~ I. Hence the lemma is proved for i = n - 2. Proceeding in this way we
prove the lemma for i = n - I, n - 2, n - 3, ... , I.

The lemma enables us to give a complete description of the position of
the zeros of SII if SII has a negative zero.

THEOREM 6.1. Let .1', < .1'2 < ... < .I'll I denote the ::eros of K :,2
1
I'

Suppose that SII has a ::ero in (~x, 0]. Then SII has a ::ero in (0, .1'1) and
a :ero ill every illterval (.I'" Yi, ,), i = 1,2, ..., 11- 2. The IlOn-positipe :ero lies
i/1 (-.1'1,0].

Proof: By Theorem 3.1 we have

where B, > 0 and I -y. II N ~ 0 (compare Corollary 5.1). Then Lemma 6.2
implies sgn SII( .1',) = ( - 1)" 1 i. Hence every inter-val (.I'" .1', + I)'

i = I, 2, ... , /1 - 2 contains at least one zero of SII'
Moreover Lemma 6.2 implies sgn SII( .I' I ) = ( - I )". Suppose S)O) of- O.

Then Corollary 5.1.2 says sgn S,,(O) = ( - 1)" I and there is at least one
zero of S" in (0, .1',). If SII(O) = 0 then, again by Corollary 5.1.2, we have
sgn S;,(O) = ( - I)" I and again there has to be at least one zero of S" in
(0, .1'1)' Since SII has by assumption n - I zeros in (0, ex) every interval
(0, .1'1)' (Yi' Yi+ I)' i = I, 2, ..., n - 2 has exactly one zero of SII'

Finally let - p denote the non-positive zero of S" and (2 the smallest
positive zero of SII' Then by Theorem 5.3(a), p < (2 < .1',.
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It is possible to represent S" as a linear combination of K,,(x), XK~,21 ,(x),
and K;,2) I(X), However, the coefficients are more complicated than those in
Theorem 3.1.

THEOREM 6.2. For n ~ 0 the polynomials S;~t. N can he It"rilten as

where

N K I21 (0)2
D = 1__'_.1 K'(O) K I21 (0) + K (0) K I 2I" (0)1. - MN " I

J K,,(O)2 In" I " "J J K,,(O)2 '

Proo{ We proceed as in the proof of Theorem 3.1. Obviously the
righthand member of (6.3) is orthogonal with respect to the inner product
(3,1) on x' for 2 ~ i ~ n - 1 for every choice of D I , D 2 , and D,. So we have
to choose the coefficients in such a way that also <I, S" >= 0 and
<x, S" >= O. This gives the equations

D) MK,,(O) - D2K,,(0) + D,(K;,(O) + MK~,21 1(0)) = 0,

D I NK;,(O) - D2NK~,2' 1(0) + D,( - K,,(O) + NK;,2 1
1(0)) = O.

From this system the coefficients can be derived.

Observe that the coefficients of Nand M N in D J are positive, so D) may
be zero for suitable choices of Nand M. If D, = 0, then S,,(x) =
(D 2 x + D,) K;,2 1 ,(x) and all zeros of K:,2J J~) are zeros of S".

Finally we describe the behaviour of the zeros of S" = S;~' for fixed nand
M and variable N. Let, as before, .1'1 < .1'2 < ... < .1'" ) denote the zeros of
K:,21 I and (1 < (2 < ... < (" those of S,> If N = 0, then S,~ = K II and by
Lemma 6.1 the location of the zeros of S" is as follows:

~fl > J'II I ~ (i+IE(y"Yi+') for i=I,2, ...,n-2. (a)

On the other hand, if N=N I >Cl" I then by Theorem 6.1 the location of
the zeros is

for i = 2, ... , n - I. (b)

The zeros (, +' are continuous functions of N. If N runs from N = 0 to
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N = N I the situation (a) is continuously transformed in the situation (b).
Hence ¢, + I had to pass through .1", (i = I, 2....• n - I). By Theorem 6.2.

S;~(y,) = D] KI!(YJ. i = 1, 2...., n - 1,

where D I = DdN) is a linear function of N. (Recall that M and n are fixed.)
Hence there is exactly one value No E (0, N I) such that DdNo ) = 0. For this
value No it follows ¢, + I =.1", for i= 1,2.... , n- 1.

Now we may conclude that if N E [0, No), then the zeros of S,~ are
located according to position (al, if N> No. then the zeros of S;~' are in
position (b).

COROLLARY 6.2. Either all zeros 01" K~,2)] are zeros of SI!' or hetween
two consecutive zeros ol K :,21 , there is exactly one zero of SII"

Remark 6.1. In general it is not true, that between two consecutive
zeros of K", there is a zero of SI!' Let x I < X 2 < ... < X I! denote the zeros
of KI!' By Theorem 6.2,

Take N=M->x, then -D,/D2 converges to

K~,2) 1(0) KI!(O)

Now

i= 1,2, ..., n. (6.4 )

K ~,2)] (0) _ _K_:,_(O_) =
K:,2) 1(0) K,,(G)

I! 1 ,,1 I

L x-I ~
i= I I /= I. I

By Lemma 6.1, x,< y,< X,+], i= 1,2, ... , n - 1. Hence

1 I I
-<-<­
x" r x,'

i.e., x, <r<x,,_

This implies that we can choose Nand M in such a way that the zero
T of D] x + D 3 is between two consecutive zeros, say Xi and Xi + 1 of K".
Let moreover N be chosen so large that S" has a negative zero. If
iE {I, 2, , n-I}, ii=j, then by (6.4) and Lemma 6.1, S,,(x,) and S,,(x,+ ,)

have opposite sign. Hence SIt has at least n - 2 zeros in (x" x")\(x,, x/+]).
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Since S" also has a negative zero, S" has at least /1 - I zeros outside
(x/, x,+ Ji. However, by (6.4), S,,(x/) and Sn(x/ 1 Ji have the same sign, so
the last zero of S" cannot lie in (x j ' xi + I)'

Remark 6.2. Several other representations of S" 10 standard polyno­
mials can be derived. Obviously we can write

S,,(X) = I AiK~21(X).
i=()

Then, for i E( 0, I, ... , /1 },

A, r I II'(X) x"K~ll(X)" dx= r I II'(X) x"S,,(xl K~21(X) dx = <S", x"K;"I(X).
"'0 .... 0

The last member is zero for i ~ /1 - 3. Hence

where the coefficients A", A" I' A fl 1 depend on /1, N, and M. This means
that S" is quasi-orthogonal with respect to( K~,2I(x)} of order 2. Marcellan
and Ronveaux [10] have proved that x"S,,(x) is quasi-orthogonal with
respect to {K,,} of order 4.
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